
Matrix group
recognition

Max Neunhöffer

Introduction
Matrix groups

Constructive recognition

The problem
Complexity theory

Randomised algorithms

Constructive recognition

Troubles

Reduction
Homomorphisms

Computing the kernel

Recursion: composition
trees

Example: invariant
subspace

Finding reductions

Solution for leaves
Classifications

Recognition of the groups

Standard generators

Verification

Matrix group recognition

Max Neunhöffer

University of St Andrews

Glasgow, 19.9.2007

Matrix group
recognition

Max Neunhöffer

Introduction
Matrix groups

Constructive recognition

The problem
Complexity theory

Randomised algorithms

Constructive recognition

Troubles

Reduction
Homomorphisms

Computing the kernel

Recursion: composition
trees

Example: invariant
subspace

Finding reductions

Solution for leaves
Classifications

Recognition of the groups

Standard generators

Verification

Matrix groups . . .
Let Fq be the field with q elements and

GLn(Fq) := {M ∈ Fn×n
q | M invertible}

Given: M1, . . . , Mk ∈ GLn(Fq)

Then the Mi generate a group G ≤ GLn(Fq).

It is finite, we have |GLn(Fq)| = qn(n−1)/2 ∏n
i=1(q

i − 1)

What do we want to determine about G?
The group order |G |
Membership test: Is M ∈ GLn(Fq) in G?
Homomorphisms ϕ : G → H?
Kernels of homomorphisms? Is G simple?
Comparison with known groups
(Maximal) subgroups?
. . .

Matrix group
recognition

Max Neunhöffer

Introduction
Matrix groups

Constructive recognition

The problem
Complexity theory

Randomised algorithms

Constructive recognition

Troubles

Reduction
Homomorphisms

Computing the kernel

Recursion: composition
trees

Example: invariant
subspace

Finding reductions

Solution for leaves
Classifications

Recognition of the groups

Standard generators

Verification

Permutation groups and matrix groups
Let n ∈ N and Sn be the symmetric group:

Sn = {π : {1, . . . , n} → {1, . . . , n} | π bijective}.

Given: π1, . . . , πk ∈ Sn

Then the πi generate a group G ≤ Sn.

It is finite, we have |Sn| = n!

Let Fq be the field with q elements and

GLn(Fq) := {M ∈ Fn×n
q | M invertible}

Given: M1, . . . , Mk ∈ GLn(Fq)

Then the Mi generate a group G ≤ GLn(Fq).

It is finite, we have |GLn(Fq)| = qn(n−1)/2 ∏n
i=1(q

i − 1)

Matrix group
recognition

Max Neunhöffer

Introduction
Matrix groups

Constructive recognition

The problem
Complexity theory

Randomised algorithms

Constructive recognition

Troubles

Reduction
Homomorphisms

Computing the kernel

Recursion: composition
trees

Example: invariant
subspace

Finding reductions

Solution for leaves
Classifications

Recognition of the groups

Standard generators

Verification

Permutation groups
Let n ∈ N and Sn be the symmetric group:

Sn = {π : {1, . . . , n} → {1, . . . , n} | π bijective}.

Given: π1, . . . , πk ∈ Sn

Then the πi generate a group G ≤ Sn.

It is finite, we have |Sn| = n!.

We can determine about G algorithmically (e.g.):
The group order |G |
Membership test: Is M ∈ Sn in G?
Homomorphisms ϕ : G → H?
Kernels of homomorphisms? Is G simple?
Comparison with known groups
(Maximal) subgroups?
. . .

Matrix group
recognition

Max Neunhöffer

Introduction
Matrix groups

Constructive recognition

The problem
Complexity theory

Randomised algorithms

Constructive recognition

Troubles

Reduction
Homomorphisms

Computing the kernel

Recursion: composition
trees

Example: invariant
subspace

Finding reductions

Solution for leaves
Classifications

Recognition of the groups

Standard generators

Verification

Constructive recognition — first formulation

Problem
Let Fq be the field with q elements and

M1, . . . , Mk ∈ GLn(Fq).

Find for G := 〈M1, . . . , Mk 〉:
The group order |G | and
an algorithm that, given M ∈ GLn(Fq),

decides, whether or not M ∈ G and
if so, expresses M as word in the Mi .

If this problem is solved, we call

〈M1, . . . , Mk 〉 recognised constructively.

Matrix group
recognition

Max Neunhöffer

Introduction
Matrix groups

Constructive recognition

The problem
Complexity theory

Randomised algorithms

Constructive recognition

Troubles

Reduction
Homomorphisms

Computing the kernel

Recursion: composition
trees

Example: invariant
subspace

Finding reductions

Solution for leaves
Classifications

Recognition of the groups

Standard generators

Verification

Complexity of algorithms

To measure the efficiency of an algorithm, we consider
a class P of problems, that the algorithm can solve.

We assign to each P ∈ P its size g(P),

and prove an upper bound for the runtime L(P) of the
algorithm for P:

L(P) ≤ f (g(P))

for some function f .

The growth rate of f measures the complexity.

Example (Constructive matrix group recognition)
Problem given by M1, . . . , Mk ∈ GLn(Fq).
Size determined by n, k and log q.
Runtime should be ≤ a polynomial in n, k and log q.

Matrix group
recognition

Max Neunhöffer

Introduction
Matrix groups

Constructive recognition

The problem
Complexity theory

Randomised algorithms

Constructive recognition

Troubles

Reduction
Homomorphisms

Computing the kernel

Recursion: composition
trees

Example: invariant
subspace

Finding reductions

Solution for leaves
Classifications

Recognition of the groups

Standard generators

Verification

Randomised algorithms

Definition (Monte Carlo algorithms)
A Monte Carlo algorithm with error probability ε is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it returns a wrong
result is at most ε.

Definition (Las Vegas algorithm)
A Las Vegas algorithm with error probability ε is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it fails is at most ε.

Example: Comp. of |G | = 4 089 470 473 293 004 800 for
permutation group G = 〈π1, π2〉 (n = 137 632):

deterministic alg.: 112s Monte Carlo ε = 1%: 6s
Saving: 95% of runtime

Matrix group
recognition

Max Neunhöffer

Introduction
Matrix groups

Constructive recognition

The problem
Complexity theory

Randomised algorithms

Constructive recognition

Troubles

Reduction
Homomorphisms

Computing the kernel

Recursion: composition
trees

Example: invariant
subspace

Finding reductions

Solution for leaves
Classifications

Recognition of the groups

Standard generators

Verification

Constructive recognition
Problem
Let Fq be the field with q elements und

M1, . . . , Mk ∈ GLn(Fq).

Find for G := 〈M1, . . . , Mk 〉:
The group order |G | and
an algorithm that, given M ∈ GLn(Fq),

decides, whether or not M ∈ G, and,
if so, expresses M as word in the Mi .

The runtime should be bounded from above by a
polynomial in n, k and log q.
A Monte Carlo Algorithmus is enough. (Verification!)

If this problem is solved, we call

〈M1, . . . , Mk 〉 recognised constructively.

Matrix group
recognition

Max Neunhöffer

Introduction
Matrix groups

Constructive recognition

The problem
Complexity theory

Randomised algorithms

Constructive recognition

Troubles

Reduction
Homomorphisms

Computing the kernel

Recursion: composition
trees

Example: invariant
subspace

Finding reductions

Solution for leaves
Classifications

Recognition of the groups

Standard generators

Verification

Troubles

The discrete logarithm problem

If M1 = [z] ∈ F1×1
q with z a primitive root of Fq. Then:

Given 0 6= [x] ∈ F1×1
q , find i ∈ N such that [x] = [z]i .

There is no solution in polynomial time in log q known!

Integer factorisation

Some methods need a factorisation of qi − 1 for an i ≤ n.

There is no solution in polynomial time in log q known!

In practice q is small ⇒ no problem.
We ignore both!

Matrix group
recognition

Max Neunhöffer

Introduction
Matrix groups

Constructive recognition

The problem
Complexity theory

Randomised algorithms

Constructive recognition

Troubles

Reduction
Homomorphisms

Computing the kernel

Recursion: composition
trees

Example: invariant
subspace

Finding reductions

Solution for leaves
Classifications

Recognition of the groups

Standard generators

Verification

What is a reduction?

Let G := 〈M1, . . . , Mk 〉 ≤ GLn(Fq).

A reduction is a group homomorphism

ϕ : G → H
Mi 7→ Pi for all i

with the following properties:

ϕ(M) is explicitly computable for all M ∈ G
ϕ is surjective: H = 〈P1, . . . , Pk 〉
H is in some sense “smaller”
or at least “easier to recognise constructively”
e.g. H ≤ Sm or H ≤ GLn′(Fq′) with n′ log q′ < n log q

Matrix group
recognition

Max Neunhöffer

Introduction
Matrix groups

Constructive recognition

The problem
Complexity theory

Randomised algorithms

Constructive recognition

Troubles

Reduction
Homomorphisms

Computing the kernel

Recursion: composition
trees

Example: invariant
subspace

Finding reductions

Solution for leaves
Classifications

Recognition of the groups

Standard generators

Verification

Computing the kernel
Let ϕ : G → H be a reduction and assume that H is
already recognised constructively.

Then we can compute the kernel N of ϕ:

1 Generate a (pseudo-) random element M ∈ G,
2 map it with ϕ onto ϕ(M) ∈ H = 〈P1, . . . , Pk 〉,
3 express ϕ(M) as word in the Pi ,
4 evaluate the same word in the Mi ,
5 get element M ′ ∈ G with M ·M ′−1 ∈ N.
6 If M is uniformly distributed in G

then M ·M ′−1 is uniformly distributed in N
7 Repeat.

→ Monte Carlo algorithm to compute N

Matrix group
recognition

Max Neunhöffer

Introduction
Matrix groups

Constructive recognition

The problem
Complexity theory

Randomised algorithms

Constructive recognition

Troubles

Reduction
Homomorphisms

Computing the kernel

Recursion: composition
trees

Example: invariant
subspace

Finding reductions

Solution for leaves
Classifications

Recognition of the groups

Standard generators

Verification

Recognising image and kernel suffices
Let ϕ : G → H be a reduction and assume that both H
and the kernel N = 〈N1, . . . , Nm〉 of ϕ are already
recognised constructively.

Then we have recognised G constructively:
|G | = |H| · |N|. And for M ∈ GLn(Fq):

1 map M with ϕ onto ϕ(M) ∈ H = 〈P1, . . . , Pk 〉,
2 express ϕ(M) as word in the Pi ,
3 evaluate the same word in the Mi ,
4 get element M ′ ∈ G such that M ·M ′−1 ∈ N,
5 express M ·M ′−1 as word in the Nj ,
6 get M as word in the Mi and Nj :

M ′ =
∏

in the Mi , M ·M ′−1 =
∏

in the Nj

⇒ M =
(∏

in the Nj
)
· (

∏
in the Mi).

7 If M /∈ G, then at least one step does not work.

Matrix group
recognition

Max Neunhöffer

Introduction
Matrix groups

Constructive recognition

The problem
Complexity theory

Randomised algorithms

Constructive recognition

Troubles

Reduction
Homomorphisms

Computing the kernel

Recursion: composition
trees

Example: invariant
subspace

Finding reductions

Solution for leaves
Classifications

Recognition of the groups

Standard generators

Verification

Recursion: composition trees
We get a tree:

G

N H

2211

3 3N H

HNHN

G

N H

N HN H

N H

1 1 2 2

3 3

Up arrows: inclusions
Down arrows: homomorphisms

Old idea, substantial improvements: Seress & N. 2006

Matrix group
recognition

Max Neunhöffer

Introduction
Matrix groups

Constructive recognition

The problem
Complexity theory

Randomised algorithms

Constructive recognition

Troubles

Reduction
Homomorphisms

Computing the kernel

Recursion: composition
trees

Example: invariant
subspace

Finding reductions

Solution for leaves
Classifications

Recognition of the groups

Standard generators

Verification

Example: invariant subspace
Let V = Fn

q, then G acts on V .
Let W ≤ V be an invariant subspace, i.e.:

MW = W for all M ∈ G

Choose basis (w1, . . . , wd) of W and extend to a basis

(w1, . . . , wd , wd+1, . . . , wn)

of V . After a base change the matrices in G look like this:[
A B
0 D

]
with A ∈ Fd×d

q , B ∈ Fd×(n−d)
q , D ∈ F(n−d)×(n−d)

q

and

G → GLn−d(Fq),

[
A B
0 D

]
7→ D

is a homomorphism of groups.

Matrix group
recognition

Max Neunhöffer

Introduction
Matrix groups

Constructive recognition

The problem
Complexity theory

Randomised algorithms

Constructive recognition

Troubles

Reduction
Homomorphisms

Computing the kernel

Recursion: composition
trees

Example: invariant
subspace

Finding reductions

Solution for leaves
Classifications

Recognition of the groups

Standard generators

Verification

Example: invariant subspace

G → GLn−d(Fq),

[
A B
0 D

]
7→ D

is a homomorphism of groups, its kernel is

N :=

{[
A B
0 D

]
∈ G | D = 1

}
.

The mapping

N → GLd(Fq),

[
A B
0 1

]
7→ A

also is a homomorphism of groups and has kernel

N2 :=

{[
A B
0 D

]
∈ G | A = D = 1

}
.

This group is a p-group for q = pe:[
1 B
0 1

]
·
[

1 B′

0 1

]
=

[
1 B + B′

0 1

]
Together with a reduction additional information is gained!

Matrix group
recognition

Max Neunhöffer

Introduction
Matrix groups

Constructive recognition

The problem
Complexity theory

Randomised algorithms

Constructive recognition

Troubles

Reduction
Homomorphisms

Computing the kernel

Recursion: composition
trees

Example: invariant
subspace

Finding reductions

Solution for leaves
Classifications

Recognition of the groups

Standard generators

Verification

How to find reductions?
Aschbacher has defined classes C1 to C8 of subgroups
of GLn(Fq).

Theorem (Aschbacher, 1984)
Let G ≤ GLn(Fq) and Z := G ∩ Z (GLn(Fq)) the subgroup
of scalar matrices. Then G lies in at least one of the
classes C1 to C8 or we have:

T ⊆ G/Z ⊆ Aut(T)
for a non-abelian simple group T , and
G acts absolutely irreducibly on V = Fn

q.

(This last case is called C9.)

Thus we can call in heavy artillery:
the classification of finite simple groups
the modular representation theory of simple groups

Matrix group
recognition

Max Neunhöffer

Introduction
Matrix groups

Constructive recognition

The problem
Complexity theory

Randomised algorithms

Constructive recognition

Troubles

Reduction
Homomorphisms

Computing the kernel

Recursion: composition
trees

Example: invariant
subspace

Finding reductions

Solution for leaves
Classifications

Recognition of the groups

Standard generators

Verification

Approach for leaves of the tree
If none of the algorithms for C1 to C8 has succeeded:

1 For “small” groups compute direct isomorphism onto
a permutation group.

2 Determine, for which (simple) group
T ≤ G/Z ≤ Aut(T) holds.

3 Find an explicit isomorphism onto a “standard copy”
of an intermediate group S.

4 Finally use information about S to recognise G
constructively.

This uses:
the classification of finite simple groups
information about their automorphism groups
information about element orders
information about conjugacy classes
classifications of the irreducible representations
information about the subgroup structure

Matrix group
recognition

Max Neunhöffer

Introduction
Matrix groups

Constructive recognition

The problem
Complexity theory

Randomised algorithms

Constructive recognition

Troubles

Reduction
Homomorphisms

Computing the kernel

Recursion: composition
trees

Example: invariant
subspace

Finding reductions

Solution for leaves
Classifications

Recognition of the groups

Standard generators

Verification

Non-constructive recognition

Methods for non-constructive recognition:

Knowledge about representations narrows down the
possibilities
Statistics about orders of random elements

Usually this leads to Monte Carlo algorithms.

Matrix group
recognition

Max Neunhöffer

Introduction
Matrix groups

Constructive recognition

The problem
Complexity theory

Randomised algorithms

Constructive recognition

Troubles

Reduction
Homomorphisms

Computing the kernel

Recursion: composition
trees

Example: invariant
subspace

Finding reductions

Solution for leaves
Classifications

Recognition of the groups

Standard generators

Verification

Standard generators
In G we can only multiply, invert and compute orders.
Suppose: G ∼= S with T ≤ S ≤ Aut(T) and T simple.

Find a tuple (s1, . . . , sr) ∈ Sr together with certain words
p1, . . . , pm in the si , such that:

S = 〈s1, . . . , sr 〉,
if (s′1, . . . , s′r) ∈ Sr with

|si | = |s′
i | for 1 ≤ i ≤ r ,

|pj | = |p′
j | for 1 ≤ j ≤ m

(the p′
j are the same words in the s′

i),

then si 7→ s′i for 1 ≤ i ≤ r defines an automorphism
of S.

Such elements are called “standard generators” of S.

We find G ∼= S explicitly by finding a tuple (M1, . . . , Mr) of
standard generators in G.
Often this leads to efficient Las Vegas algorithms to find
explicit isomorphisms.

Matrix group
recognition

Max Neunhöffer

Introduction
Matrix groups

Constructive recognition

The problem
Complexity theory

Randomised algorithms

Constructive recognition

Troubles

Reduction
Homomorphisms

Computing the kernel

Recursion: composition
trees

Example: invariant
subspace

Finding reductions

Solution for leaves
Classifications

Recognition of the groups

Standard generators

Verification

Verification

Everywhere we used randomised methods:
Las Vegas and Monte Carlo.

⇒ We have to check whether our result is correct!

Idea:
Find (short) presentations for the leaf-groups,
put these together to one for the whole group.
Check the relations and thus prove the result.

	Introduction
	Matrix groups
	Constructive recognition

	The problem
	Complexity theory
	Randomised algorithms
	Constructive recognition
	Troubles

	Reduction
	Homomorphisms
	Computing the kernel
	Recursion: composition trees
	Example: invariant subspace
	Finding reductions

	Solution for leaves
	Classifications
	Recognition of the groups
	Standard generators

	Verification

