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Matrix groups . . .
Let Fq be the field with q elements and

GLn(Fq) := {M ∈ Fn×n
q | M invertible}

Given: M1, . . . , Mk ∈ GLn(Fq)

Then the Mi generate a group G ≤ GLn(Fq).

It is finite, we have |GLn(Fq)| = qn(n−1)/2 ∏n
i=1(q

i − 1)

What do we want to determine about G?
The group order |G |
Membership test: Is M ∈ GLn(Fq) in G?
Homomorphisms ϕ : G → H?
Kernels of homomorphisms? Is G simple?
Comparison with known groups
(Maximal) subgroups?
. . .
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Permutation groups and matrix groups
Let n ∈ N and Sn be the symmetric group:

Sn = {π : {1, . . . , n} → {1, . . . , n} | π bijective}.

Given: π1, . . . , πk ∈ Sn

Then the πi generate a group G ≤ Sn.

It is finite, we have |Sn| = n!

Let Fq be the field with q elements and

GLn(Fq) := {M ∈ Fn×n
q | M invertible}

Given: M1, . . . , Mk ∈ GLn(Fq)

Then the Mi generate a group G ≤ GLn(Fq).

It is finite, we have |GLn(Fq)| = qn(n−1)/2 ∏n
i=1(q

i − 1)
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Permutation groups
Let n ∈ N and Sn be the symmetric group:

Sn = {π : {1, . . . , n} → {1, . . . , n} | π bijective}.

Given: π1, . . . , πk ∈ Sn

Then the πi generate a group G ≤ Sn.

It is finite, we have |Sn| = n!.

We can determine about G algorithmically (e.g.):
The group order |G |
Membership test: Is M ∈ Sn in G?
Homomorphisms ϕ : G → H?
Kernels of homomorphisms? Is G simple?
Comparison with known groups
(Maximal) subgroups?
. . .
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Constructive recognition — first formulation

Problem
Let Fq be the field with q elements and

M1, . . . , Mk ∈ GLn(Fq).

Find for G := 〈M1, . . . , Mk 〉:
The group order |G | and
an algorithm that, given M ∈ GLn(Fq),

decides, whether or not M ∈ G and
if so, expresses M as word in the Mi .

If this problem is solved, we call

〈M1, . . . , Mk 〉 recognised constructively.
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Complexity of algorithms

To measure the efficiency of an algorithm, we consider
a class P of problems, that the algorithm can solve.

We assign to each P ∈ P its size g(P),

and prove an upper bound for the runtime L(P) of the
algorithm for P:

L(P) ≤ f (g(P))

for some function f .

The growth rate of f measures the complexity.

Example (Constructive matrix group recognition)
Problem given by M1, . . . , Mk ∈ GLn(Fq).
Size determined by n, k and log q.
Runtime should be ≤ a polynomial in n, k and log q.
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Randomised algorithms

Definition (Monte Carlo algorithms)
A Monte Carlo algorithm with error probability ε is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it returns a wrong
result is at most ε.

Definition (Las Vegas algorithm)
A Las Vegas algorithm with error probability ε is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it fails is at most ε.

Example: Comp. of |G | = 4 089 470 473 293 004 800 for
permutation group G = 〈π1, π2〉 (n = 137 632):

deterministic alg.: 112s Monte Carlo ε = 1%: 6s
Saving: 95% of runtime
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Constructive recognition
Problem
Let Fq be the field with q elements und

M1, . . . , Mk ∈ GLn(Fq).

Find for G := 〈M1, . . . , Mk 〉:
The group order |G | and
an algorithm that, given M ∈ GLn(Fq),

decides, whether or not M ∈ G, and,
if so, expresses M as word in the Mi .

The runtime should be bounded from above by a
polynomial in n, k and log q.
A Monte Carlo Algorithmus is enough. (Verification!)

If this problem is solved, we call

〈M1, . . . , Mk 〉 recognised constructively.
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Troubles

The discrete logarithm problem

If M1 = [z] ∈ F1×1
q with z a primitive root of Fq. Then:

Given 0 6= [x ] ∈ F1×1
q , find i ∈ N such that [x ] = [z]i .

There is no solution in polynomial time in log q known!

Integer factorisation

Some methods need a factorisation of qi − 1 for an i ≤ n.

There is no solution in polynomial time in log q known!

In practice q is small ⇒ no problem.
We ignore both!
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What is a reduction?

Let G := 〈M1, . . . , Mk 〉 ≤ GLn(Fq).

A reduction is a group homomorphism

ϕ : G → H
Mi 7→ Pi for all i

with the following properties:

ϕ(M) is explicitly computable for all M ∈ G
ϕ is surjective: H = 〈P1, . . . , Pk 〉
H is in some sense “smaller”
or at least “easier to recognise constructively”
e.g. H ≤ Sm or H ≤ GLn′(Fq′) with n′ log q′ < n log q
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Computing the kernel
Let ϕ : G → H be a reduction and assume that H is
already recognised constructively.

Then we can compute the kernel N of ϕ:

1 Generate a (pseudo-) random element M ∈ G,
2 map it with ϕ onto ϕ(M) ∈ H = 〈P1, . . . , Pk 〉,
3 express ϕ(M) as word in the Pi ,
4 evaluate the same word in the Mi ,
5 get element M ′ ∈ G with M ·M ′−1 ∈ N.
6 If M is uniformly distributed in G

then M ·M ′−1 is uniformly distributed in N
7 Repeat.

→ Monte Carlo algorithm to compute N
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Recognising image and kernel suffices
Let ϕ : G → H be a reduction and assume that both H
and the kernel N = 〈N1, . . . , Nm〉 of ϕ are already
recognised constructively.

Then we have recognised G constructively:
|G | = |H| · |N|. And for M ∈ GLn(Fq):

1 map M with ϕ onto ϕ(M) ∈ H = 〈P1, . . . , Pk 〉,
2 express ϕ(M) as word in the Pi ,
3 evaluate the same word in the Mi ,
4 get element M ′ ∈ G such that M ·M ′−1 ∈ N,
5 express M ·M ′−1 as word in the Nj ,
6 get M as word in the Mi and Nj :

M ′ =
∏

in the Mi , M ·M ′−1 =
∏

in the Nj

⇒ M =
(∏

in the Nj
)
· (

∏
in the Mi).

7 If M /∈ G, then at least one step does not work.
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Recursion: composition trees
We get a tree:

G

N H

2211

3 3N H

HNHN

G

N H

N HN H

N H

1 1 2 2

3 3

Up arrows: inclusions
Down arrows: homomorphisms

Old idea, substantial improvements: Seress & N. 2006



Matrix group
recognition

Max Neunhöffer

Introduction
Matrix groups

Constructive recognition

The problem
Complexity theory

Randomised algorithms

Constructive recognition

Troubles

Reduction
Homomorphisms

Computing the kernel

Recursion: composition
trees

Example: invariant
subspace

Finding reductions

Solution for leaves
Classifications

Recognition of the groups

Standard generators

Verification

Example: invariant subspace
Let V = Fn

q, then G acts on V .
Let W ≤ V be an invariant subspace, i.e.:

MW = W for all M ∈ G

Choose basis (w1, . . . , wd) of W and extend to a basis

(w1, . . . , wd , wd+1, . . . , wn)

of V . After a base change the matrices in G look like this:[
A B
0 D

]
with A ∈ Fd×d

q , B ∈ Fd×(n−d)
q , D ∈ F(n−d)×(n−d)

q

and

G → GLn−d(Fq),

[
A B
0 D

]
7→ D

is a homomorphism of groups.
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Example: invariant subspace

G → GLn−d(Fq),

[
A B
0 D

]
7→ D

is a homomorphism of groups, its kernel is

N :=

{[
A B
0 D

]
∈ G | D = 1

}
.

The mapping

N → GLd(Fq),

[
A B
0 1

]
7→ A

also is a homomorphism of groups and has kernel

N2 :=

{[
A B
0 D

]
∈ G | A = D = 1

}
.

This group is a p-group for q = pe:[
1 B
0 1

]
·
[

1 B′

0 1

]
=

[
1 B + B′

0 1

]
Together with a reduction additional information is gained!
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How to find reductions?
Aschbacher has defined classes C1 to C8 of subgroups
of GLn(Fq).

Theorem (Aschbacher, 1984)
Let G ≤ GLn(Fq) and Z := G ∩ Z (GLn(Fq)) the subgroup
of scalar matrices. Then G lies in at least one of the
classes C1 to C8 or we have:

T ⊆ G/Z ⊆ Aut(T)
for a non-abelian simple group T , and
G acts absolutely irreducibly on V = Fn

q.

(This last case is called C9.)

Thus we can call in heavy artillery:
the classification of finite simple groups
the modular representation theory of simple groups
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Approach for leaves of the tree
If none of the algorithms for C1 to C8 has succeeded:

1 For “small” groups compute direct isomorphism onto
a permutation group.

2 Determine, for which (simple) group
T ≤ G/Z ≤ Aut(T ) holds.

3 Find an explicit isomorphism onto a “standard copy”
of an intermediate group S.

4 Finally use information about S to recognise G
constructively.

This uses:
the classification of finite simple groups
information about their automorphism groups
information about element orders
information about conjugacy classes
classifications of the irreducible representations
information about the subgroup structure
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Non-constructive recognition

Methods for non-constructive recognition:

Knowledge about representations narrows down the
possibilities
Statistics about orders of random elements

Usually this leads to Monte Carlo algorithms.
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Standard generators
In G we can only multiply, invert and compute orders.
Suppose: G ∼= S with T ≤ S ≤ Aut(T ) and T simple.

Find a tuple (s1, . . . , sr ) ∈ Sr together with certain words
p1, . . . , pm in the si , such that:

S = 〈s1, . . . , sr 〉,
if (s′1, . . . , s′r ) ∈ Sr with

|si | = |s′
i | for 1 ≤ i ≤ r ,

|pj | = |p′
j | for 1 ≤ j ≤ m

(the p′
j are the same words in the s′

i ),

then si 7→ s′i for 1 ≤ i ≤ r defines an automorphism
of S.

Such elements are called “standard generators” of S.

We find G ∼= S explicitly by finding a tuple (M1, . . . , Mr ) of
standard generators in G.
Often this leads to efficient Las Vegas algorithms to find
explicit isomorphisms.
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Verification

Everywhere we used randomised methods:
Las Vegas and Monte Carlo.

⇒ We have to check whether our result is correct!

Idea:
Find (short) presentations for the leaf-groups,
put these together to one for the whole group.
Check the relations and thus prove the result.
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