Max Neunhöffer

Introduction Matrix groups Constructive recognitio

The problem

Complexity theory Randomised algorithms Constructive recognition Troubles

Reduction

- Homomorphisms Computing the kernel Recursion: composition trees Example: invariant subspace Finding reductions
- Solution for leaves Classifications Recognition of the groups Standard generators
- Verification

Matrix group recognition

Max Neunhöffer

University of St Andrews

Glasgow, 19.9.2007

Max Neunhöffer

Introduction Matrix groups Constructive recognition

The problem

Complexity theory Randomised algorithms Constructive recognition Troubles

Reduction

Homomorphisms Computing the kernel Recursion: composition trees Example: invariant subspace

Finding reductions

Solution for leaves Classifications Recognition of the groups Standard generators

Verification

Matrix groups ...

Let \mathbb{F}_q be the field with q elements and

$$\operatorname{GL}_n(\mathbb{F}_q) := \{ M \in \mathbb{F}_q^{n imes n} \mid M ext{ invertible} \}$$

Given: $M_1, \ldots, M_k \in \operatorname{GL}_n(\mathbb{F}_q)$

Then the M_i generate a group $G \leq \operatorname{GL}_n(\mathbb{F}_q)$. It is finite, we have $|\operatorname{GL}_n(\mathbb{F}_q)| = q^{n(n-1)/2} \prod_{i=1}^n (q^i - 1)$

What do we want to determine about G?

- The group order |G|
- Membership test: Is $M \in \operatorname{GL}_n(\mathbb{F}_q)$ in *G*?
- Homomorphisms $\varphi : G \rightarrow H$?
- Kernels of homomorphisms? Is G simple?
- Comparison with known groups
- (Maximal) subgroups?

Ο...

Max Neunhöffer

Introduction Matrix groups Constructive recognitio

The problem

Complexity theory Randomised algorithms Constructive recognition Troubles

Reduction

Homomorphisms Computing the kernel Recursion: composition trees Example: invariant subspace Finding reductions

Classifications Recognition of the groups Standard generators

Verification

Permutation groups and matrix groups

Let $n \in \mathbb{N}$ and S_n be the symmetric group:

 $S_n = \{\pi : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\} \mid \pi \text{ bijective}\}.$

Given: $\pi_1, \ldots, \pi_k \in S_n$

Then the π_i generate a group $G \le S_n$. It is finite, we have $|S_n| = n!$

Let \mathbb{F}_q be the field with q elements and

 $\operatorname{GL}_n(\mathbb{F}_q) := \{ M \in \mathbb{F}_q^{n \times n} \mid M \text{ invertible} \}$

Given: $M_1, \ldots, M_k \in \operatorname{GL}_n(\mathbb{F}_q)$

Then the M_i generate a group $G \leq \operatorname{GL}_n(\mathbb{F}_q)$. It is finite, we have $|\operatorname{GL}_n(\mathbb{F}_q)| = q^{n(n-1)/2} \prod_{i=1}^n (q^i - 1)$

Max Neunhöffer

Introduction Matrix groups Constructive recognition

The problem

Complexity theory Randomised algorithms Constructive recognition Troubles

Reduction

- Homomorphisms Computing the kernel Recursion: composition trees Example: invariant
- Finding reductions
- Solution for leaves Classifications Recognition of the groups Standard generators

Verification

Permutation groups

Let $n \in \mathbb{N}$ and S_n be the symmetric group:

$$S_n = \{\pi : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\} \mid \pi \text{ bijective}\}.$$

Given: $\pi_1, \ldots, \pi_k \in S_n$

Then the π_i generate a group $G \leq S_n$.

It is finite, we have $|S_n| = n!$.

We can determine about G algorithmically (e.g.):

- The group order |G|
- Membership test: Is $M \in S_n$ in G?
- Homomorphisms $\varphi : \mathbf{G} \to \mathbf{H}$?
- Kernels of homomorphisms? Is G simple?
- Comparison with known groups
- (Maximal) subgroups?

Ο...

Max Neunhöffer

Introduction Matrix groups Constructive recognition

The problem

Complexity theory Randomised algorithms Constructive recognition Troubles

Reduction

Homomorphisms Computing the kernel Recursion: composition trees Example: invariant subspace

Solution for leaves Classifications Recognition of the groups Standard generators

Verification

Constructive recognition — first formulation

Problem

Let \mathbb{F}_q be the field with q elements and

$$M_1,\ldots,M_k\in \mathrm{GL}_n(\mathbb{F}_q).$$

Find for $G := \langle M_1, \ldots, M_k \rangle$:

- The group order |G| and
 an algorithm that, given M ∈ GL_n(F_q),
 decides, whether or not M ∈ G and
 - if so, expresses *M* as word in the *M_i*.

If this problem is solved, we call

 $\langle M_1, \ldots, M_k \rangle$ recognised constructively.

Max Neunhöffer

Introduction Matrix groups Constructive recognition

The problem Complexity theory Randomised algorithms Constructive recognition Troubles

Reduction

Homomorphisms Computing the kernel Recursion: composition trees Example: invariant subspace

Finding reductions

Solution for leaves Classifications Recognition of the groups Standard generators

Verification

Complexity of algorithms

To measure the efficiency of an algorithm, we consider a class \mathcal{P} of problems, that the algorithm can solve.

We assign to each $P \in \mathcal{P}$ its size g(P),

and prove an upper bound for the runtime L(P) of the algorithm for P:

 $L(P) \leq f(g(P))$

for some function f.

The growth rate of f measures the complexity.

Example (Constructive matrix group recognition)

- Problem given by $M_1, \ldots, M_k \in \operatorname{GL}_n(\mathbb{F}_q)$.
- Size determined by *n*, *k* and log *q*.
- Runtime should be \leq a polynomial in *n*, *k* and log *q*.

Max Neunhöffer

Introduction Matrix groups Constructive recognition

The problem Complexity theory Randomised algorithms Constructive recognition Troubles

Reduction

Homomorphisms Computing the kernel Recursion: composition trees Example: invariant subspace Finding reductions

Solution for leaves Classifications Recognition of the groups Standard generators

Verification

Randomised algorithms

Definition (Monte Carlo algorithms)

A Monte Carlo algorithm with error probability ϵ is an algorithm, that is guaranteed to terminate after a finite time, such that the probability that it returns a wrong result is at most ϵ .

Definition (Las Vegas algorithm)

A Las Vegas algorithm with error probability ϵ is an algorithm, that is guaranteed to terminate after a finite time, such that the probability that it fails is at most ϵ .

 Example: Comp. of $|G| = 4\,089\,470\,473\,293\,004\,800$ for permutation group $G = \langle \pi_1, \pi_2 \rangle$ ($n = 137\,632$):

 deterministic alg.: 112s
 Monte Carlo $\epsilon = 1\%$: 6s

 Saving: 95% of runtime

Max Neunhöffer

Introduction Matrix groups Constructive recognition

The problem

Complexity theory Randomised algorithms Constructive recognition Troubles

Reduction

- Homomorphisms Computing the kernel
- Recursion: compositio
- Example: invariant
- Finding reductions
- Solution for leaves Classifications Recognition of the groups Standard generators

Verification

Constructive recognition

Problem

Let \mathbb{F}_q be the field with q elements und

 $M_1,\ldots,M_k\in \mathrm{GL}_n(\mathbb{F}_q).$

Find for $G := \langle M_1, \ldots, M_k \rangle$:

- The group order |G| and
- an algorithm that, given $M \in GL_n(\mathbb{F}_q)$,
 - decides, whether or not $M \in G$, and,
 - if so, expresses *M* as word in the *M*_i.
- The runtime should be bounded from above by a polynomial in *n*, *k* and log *q*.
- A Monte Carlo Algorithmus is enough. (Verification!)

If this problem is solved, we call $\langle M_1, \ldots, M_k \rangle$ recognised constructively.

Max Neunhöffer

Introduction Matrix groups

The problem

Complexity theory Randomised algorithms Constructive recognition Troubles

Reduction

- Homomorphisms Computing the kernel Recursion: composition trees Example: invariant subspace Finding reductions
- Solution for leaves Classifications Recognition of the groups Standard generators

Verification

Troubles

The discrete logarithm problem

If $M_1 = [z] \in \mathbb{F}_q^{1 \times 1}$ with *z* a primitive root of \mathbb{F}_q . Then:

Given $0 \neq [x] \in \mathbb{F}_q^{1 \times 1}$, find $i \in \mathbb{N}$ such that $[x] = [z]^i$.

There is no solution in polynomial time in log q known!

Integer factorisation

Some methods need a factorisation of $q^i - 1$ for an $i \le n$.

There is no solution in polynomial time in log q known!

In practice q is small \Rightarrow no problem. We ignore both!

Max Neunhöffer

I

Introduction Matrix groups Constructive recognition

The problem

Complexity theory Randomised algorithms Constructive recognition Troubles

Reduction

- Homomorphisms Computing the kernel Recursion: composition trees Example: invariant subspace Finding reductions
- Solution for leaves Classifications Recognition of the groups Standard generators

Verification

What is a reduction?

Let
$$G := \langle M_1, \ldots, M_k \rangle \leq \operatorname{GL}_n(\mathbb{F}_q).$$

A reduction is a group homomorphism

$$\varphi : G \rightarrow H$$

 $M_i \mapsto P_i$ for all i

with the following properties:

- $\varphi(M)$ is explicitly computable for all $M \in G$
- φ is surjective: $H = \langle P_1, \dots, P_k \rangle$
- *H* is in some sense "smaller"
- or at least "easier to recognise constructively"
- e.g. $H \leq S_m$ or $H \leq \operatorname{GL}_{n'}(\mathbb{F}_{q'})$ with $n' \log q' < n \log q$

Max Neunhöffer

Introduction Matrix groups Constructive recognitio

The problem

Complexity theory Randomised algorithms Constructive recognition Troubles

Reduction

Homomorphisms Computing the kernel Recursion: composition trees Example: invariant subspace Einding reductions

Solution for leaves Classifications Recognition of the groups Standard generators

Verification

Computing the kernel

Let $\varphi : G \to H$ be a reduction and assume that H is already recognised constructively.

Then we can compute the kernel *N* of φ :

Generate a (pseudo-) random element $M \in G$,

- **2** map it with φ onto $\varphi(M) \in H = \langle P_1, \ldots, P_k \rangle$,
- Sector express $\varphi(M)$ as word in the P_i ,
- evaluate the same word in the M_i ,
- **9** get element $M' \in G$ with $M \cdot M'^{-1} \in N$.
- If M is uniformly distributed in G then M · M'⁻¹ is uniformly distributed in N
- Repeat.
- \rightarrow Monte Carlo algorithm to compute N

Max Neunhöffer

Introduction Matrix groups Constructive recognitio

The problem

Complexity theory Randomised algorithms Constructive recognition Troubles

Reduction

Homomorphisms Computing the kernel Recursion: composition

Recursion: compositio trees

Example: invarian subspace

Finding reductions

Solution for leaves Classifications Recognition of the groups Standard generators

Verification

Recognising image and kernel suffices

Let $\varphi : G \to H$ be a reduction and assume that both Hand the kernel $N = \langle N_1, \dots, N_m \rangle$ of φ are already recognised constructively.

Then we have recognised *G* constructively: $|G| = |H| \cdot |N|$. And for $M \in GL_n(\mathbb{F}_q)$:

- map *M* with φ onto φ(*M*) ∈ *H* = ⟨*P*₁,...,*P*_k⟩,
 express φ(*M*) as word in the *P_i*,
- evaluate the same word in the M_i ,
- get element $M' \in G$ such that $M \cdot M'^{-1} \in N$,
- express $M \cdot M'^{-1}$ as word in the N_j ,
- get *M* as word in the *M_i* and *N_j*: *M'* = ∏ in the *M_i*, *M* · *M'*⁻¹ = ∏ in the *N_j* ⇒ *M* = (∏ in the *N_j*) · (∏ in the *M_i*).
 If *M* ∉ *G*, then at least one step does not work.

Max Neunhöffer

Introduction Matrix groups

Constructive recognition

The problem

Complexity theory Randomised algorithms Constructive recognition Troubles

Reduction

Homomorphisms Computing the kernel

Recursion: composition trees

Example: invariant subspace

Finding reductions

Solution for leaves Classifications Recognition of the groups Standard generators

Verification

Recursion: composition trees We get a tree:

Up arrows: inclusions Down arrows: homomorphisms

Old idea, substantial improvements: Seress & N. 2006

Max Neunhöffer

Introduction Matrix groups Constructive recognitio

The problem

Complexity theory Randomised algorithms Constructive recognition Troubles

Reduction

Homomorphisms Computing the kernel Recursion: composition trees Example: invariant subspace

Finding reduction:

Solution for leaves Classifications Recognition of the groups Standard generators

Verification

Example: invariant subspace

Let $V = \mathbb{F}_q^n$, then *G* acts on *V*. Let $W \le V$ be an invariant subspace, i.e.:

$$MW = W$$
 for all $M \in G$

Choose basis (w_1, \ldots, w_d) of W and extend to a basis

$$(w_1,\ldots,w_d,w_{d+1},\ldots,w_n)$$

of V. After a base change the matrices in G look like this:

 $\begin{bmatrix} A & B \\ \hline \mathbf{0} & D \end{bmatrix} \quad \text{with } A \in \mathbb{F}_q^{d \times d}, B \in \mathbb{F}_q^{d \times (n-d)}, D \in \mathbb{F}_q^{(n-d) \times (n-d)}$

and

$$G o \operatorname{GL}_{n-d}(\mathbb{F}_q), \left[egin{array}{cc} A & B \ \mathbf{0} & D \end{array}
ight] \mapsto D$$

is a homomorphism of groups.

Max Neunhöffer

Introduction Matrix groups Constructive recognition

The problem

Complexity theory Randomised algorithms Constructive recognition Troubles

Reduction

Homomorphisms Computing the kernel Recursion: composition trees Example: invariant subspace Finding reductions

Solution for leaves Classifications Recognition of the groups Standard generators

Verification

Example: invariant subspace $G \to \operatorname{GL}_{n-d}(\mathbb{F}_q), \begin{bmatrix} A & B \\ \mathbf{0} & D \end{bmatrix} \mapsto D$

is a homomorphism of groups, its kernel is

$$N := \left\{ \left[egin{array}{cc} A & B \ \mathbf{0} & D \end{array}
ight] \in G \mid D = \mathbf{1}
ight\}.$$

The mapping

$$N o \operatorname{GL}_d(\mathbb{F}_q), \left[egin{array}{cc} A & B \ \mathbf{0} & \mathbf{1} \end{array}
ight] \mapsto A$$

also is a homomorphism of groups and has kernel

$$N_2 := \left\{ \left[egin{array}{cc} A & B \ \mathbf{0} & D \end{array}
ight] \in G \mid A = D = \mathbf{1}
ight\}$$

This group is a *p*-group for $q = p^e$:

$$\left[\begin{array}{cc} \mathbf{1} & B \\ \mathbf{0} & \mathbf{1} \end{array}\right] \cdot \left[\begin{array}{cc} \mathbf{1} & B' \\ \mathbf{0} & \mathbf{1} \end{array}\right] = \left[\begin{array}{cc} \mathbf{1} & B + B' \\ \mathbf{0} & \mathbf{1} \end{array}\right]$$

Together with a reduction additional information is gained!

Max Neunhöffer

Introduction

Constructive recognition

The problem

Complexity theory Randomised algorithms Constructive recognition Troubles

Reduction

Homomorphisms Computing the kernel Recursion: composition trees Example: invariant

subspace

Finding reductions

Solution for leaves Classifications Recognition of the groups Standard generators

Verification

How to find reductions?

Aschbacher has defined classes C1 to C8 of subgroups of $\operatorname{GL}_n(\mathbb{F}_q)$.

Theorem (Aschbacher, 1984)

Let $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ and $Z := G \cap Z(\operatorname{GL}_n(\mathbb{F}_q))$ the subgroup of scalar matrices. Then G lies in at least one of the classes C1 to C8 or we have:

 T ⊆ G/Z ⊆ Aut(T) for a non-abelian simple group T, and

• G acts absolutely irreducibly on $V = \mathbb{F}_q^n$.

(This last case is called C9.)

Thus we can call in heavy artillery:

- the classification of finite simple groups
- the modular representation theory of simple groups

Max Neunhöffer

Introduction Matrix groups

Constructive recognition

The problem

Complexity theory Randomised algorithms Constructive recognition Troubles

Reduction

- Homomorphisms Computing the kernel Recursion: composition trees
- Example: invarian subspace
- Finding reductions

Solution for leaves Classifications

- Recognition of the groups Standard generators
- Verification

Approach for leaves of the tree

If none of the algorithms for C1 to C8 has succeeded:

For "small" groups compute direct isomorphism onto a permutation group.

2 Determine, for which (simple) group

- $T \leq G/Z \leq \operatorname{Aut}(T)$ holds.
- Find an explicit isomorphism onto a "standard copy" of an intermediate group S.
- Finally use information about S to recognise G constructively.

This uses:

- the classification of finite simple groups
- information about their automorphism groups
- information about element orders
- information about conjugacy classes
- classifications of the irreducible representations
- information about the subgroup structure

Max Neunhöffer

Introduction Matrix groups

The problem

Complexity theory Randomised algorithms Constructive recognition Troubles

Reduction

- Homomorphisms Computing the kernel Recursion: composition trees Example: invariant subspace
- Solution for leaves Classifications Recognition of the groups

Standard generators

Verification

Non-constructive recognition

Methods for non-constructive recognition:

- Knowledge about representations narrows down the possibilities
- Statistics about orders of random elements

Usually this leads to Monte Carlo algorithms.

Max Neunhöffer

Introduction Matrix groups Constructive recognit

The problem

Complexity theory Randomised algorithms Constructive recognition Troubles

Reduction

Homomorphisms Computing the kernel Recursion: composition trees Example: invariant subspace Finding reductions Solution for leave

Classifications Recognition of the gro

Standard generators

Verification

Standard generators

In *G* we can only multiply, invert and compute orders. Suppose: $G \cong S$ with $T \leq S \leq Aut(T)$ and *T* simple.

Find a tuple $(s_1, \ldots, s_r) \in S^r$ together with certain words p_1, \ldots, p_m in the s_i , such that:

• $S = \langle s_1, ..., s_r \rangle$, • if $(s'_1, ..., s'_r) \in S^r$ with • $|s_i| = |s'_i|$ for $1 \le i \le r$, • $|p_i| = |p'_i|$ for $1 \le j \le m$

(the p'_i are the same words in the s'_i),

then $s_i \mapsto s'_i$ for $1 \le i \le r$ defines an automorphism of *S*.

Such elements are called "standard generators" of S.

We find $G \cong S$ explicitly by finding a tuple (M_1, \ldots, M_r) of standard generators in G.

Often this leads to efficient Las Vegas algorithms to find explicit isomorphisms.

Max Neunhöffer

Introduction Matrix groups Constructive recognitio

The problem

Complexity theory Randomised algorithms Constructive recognition Troubles

Reduction

- Homomorphisms Computing the kernel Recursion: composition trees Example: invariant subspace Finding reductions
- Solution for leaves Classifications Recognition of the groups Standard generators

Verification

Verification

Everywhere we used randomised methods: Las Vegas and Monte Carlo.

 \Rightarrow We have to check whether our result is correct!

Idea:

- Find (short) presentations for the leaf-groups,
- put these together to one for the whole group.
- Check the relations and thus prove the result.