
LMS J. Comput. Math. 15 (2012) 140–157 Ce2012 Authors
doi:10.1112/S1461157012000071

Condensation of homomorphism spaces

Klaus Lux, Max Neunhöffer and Felix Noeske

Abstract

We present an efficient algorithm for the condensation of homomorphism spaces. This provides
an improvement over the known tensor condensation method which is essentially due to a better
choice of bases. We explain the theory behind this approach and describe the implementation in
detail. Finally, we give timings to compare with previous methods.

1. Introduction

Computational methods have been particularly successful in the modular representation theory
of sporadic groups. From the days when Parker and Thackray devised the MeatAxe [9, 12],
to recent progress in the modular Atlas project [13], the majority of results can be attributed
to the application of computers. However, diverting complex calculations to a machine, while
expediting the answer and simultaneously precluding man-made miscalculations, does not mean
that a push-of-a-button strategy is always met with success. In fact, most open problems in
the modular Atlas project have resisted a direct computational approach when they were first
considered. To regain computational tractability, Thackray introduced a method called fixed-
point reduction in his PhD thesis [12], which allowed him to study large modules by only
considering certain subspaces. This method is a special case of what has become known as
‘condensation’.

The precise connection is as follows. Let F be a field of characteristic p greater than zero,
G a finite group, FG the group algebra, and V a finite-dimensional FG-module. Furthermore,
let e ∈ FG be an idempotent. Then we consider the condensation functor − · e : mod-FG→
mod-eFGe, under which V is mapped to V e and a homomorphism ϕ ∈HomFG(V, W) mapped
to its restriction ϕ|V e ∈HomeFGe(V e, We). We refer to V e as the condensed module of V
and e as the condensation idempotent. The condensation functor has a number of interesting
properties, details of which are given in [1, Section 6] or [11], for example.

The wide array of different condensation algorithms available for group algebras, providing
implementations which allow the condensation of, for instance, permutation modules [3],
induced modules [6, 8] and tensor products of modules [5, 8], is testimony to the
method’s usefulness. In this article we present an efficient algorithm for the condensation
of homomorphism spaces of FG-modules for some finite group G. As homomorphism spaces
may be viewed as tensor products and vice versa, the method we present also improves the
condensation of tensor products of FG-modules.

We fix some further notation which will remain in effect throughout the paper. Let V and W
be finite-dimensional FG-modules. Then HomF (V, W) is also a finite-dimensional FG-module,
where the action is defined as

ϕg : v 7→ ϕ(vg−1)g, v ∈ V (1)

for all ϕ ∈HomF (V, W) and g ∈G.
We choose a subgroup K 6G whose order is coprime to the characteristic of F . Let Λ denote

a one-dimensional FK -module affording the linear representation λ. In the present work we

Received 20 January 2011; revised 1 November 2011.

2010 Mathematics Subject Classification 20C05, 20C20, 20C40 (primary).

http://www.lms.ac.uk/jcm
http://www.ams.org/mathscinet/msc/msc.html

CONDENSATION OF HOMOMORPHISM SPACES 141

condense with idempotents of the form

eλ :=
1
|K|

∑
k∈K

λ(k−1)k,

that is, eλ is the central primitive idempotent corresponding to the simple module Λ in the
semi-simple group algebra FK . Therefore we call K a condensation subgroup.

This paper is structured as follows. After introducing some notation in Section 2, we begin
in Section 3 with building the theoretical underpinnings from which we will construct our
algorithm in Sections 4–6. Section 5 details the one-off calculations needed to prepare the
input for the actual condensation process, which we then describe in Section 6. In particular,
in Section 5 we deal with the independently interesting problem of how to quickly calculate
a semi-simplicity basis for a module. Section 6 describes the gory details of the condensation
routine and analyses its complexity. We show there that the most time-critical part of the
computation is improved by a factor equal to the sum of the dimensions of two composition
factors. However, since this factor depends on the pair of composition factors considered, and
because the condensation algorithm loops over many different pairs, the factor of improvement
varies greatly across different parts of the computation, and therefore it is not possible to
predict theoretically the aggregated expected speed-up with an easy formula in terms of some
dimensions or group orders. The paper finishes with Section 7, in which we give some runtime
examples of our algorithm to illustrate its efficiency in practice.

2. Notation

In general, to compose maps from right to left, we write α ◦ β to mean the map which applies
first β and then α. Let V and W be vector spaces over the same field F . For given bases B of V
and C of W and a linear map φ : V →W , we write MCB(φ) for the matrix describing the action of
φ with respect to the two bases. We use row-convention, that is, the rows of MCB(φ) contain the
coefficients of the action of φ on the basis B with respect to the basis C. For an endomorphism
without basis change, that is, B = C, we simply write MB(φ). Note that by this convention
we have MB(ϕ ◦ φ) = MB(φ)MB(ϕ), and the matrix is acting by right multiplication on its
natural vector space.

Now let V and W be FG-modules for a finite group G. Interpreting the elements of FG as
the endomorphisms that they induce on V and W , we shall also write MB(g) and MC(g) for
the matrices which describe the action of g on V and on W , respectively.

For a subgroup K 6G, we denote the restricted modules by V↓K and W↓K . If V↓K =
⊕s

i=1 Si
and W↓K =

⊕t
j=1 Tj are direct sum decompositions, we often choose bases B and C for V

and W , respectively, by concatenating bases Bi of the Si and bases Cj of the Tj . In this
case, we denote by M

Bj
Bi (g) the submatrix of MBB (g) with rows corresponding to the basis

vectors in Bi and columns corresponding to the basis vectors in Bj . Formally, this is the
matrix MBjBi (pVj ◦ g ◦ ιVi) of pVj ◦ g ◦ ιVi with respect to the bases Bi and Bj , where ιVi : Si→ V

is the inclusion map and pVj : V → Sj is the projection map given by the above direct sum
decomposition. Similarly, for a linear map ϕ : V →W , we denote by MCjBi (ϕ) the submatrix of
MCB(ϕ) which is equal to the matrix M

Cj
Bi (p

W
j ◦ ϕ ◦ ιVi) of pWj ◦ ϕ ◦ ιVi , where pWj :W → Tj is

the projection map given by the above direct sum decomposition.

3. The theory

To compute the action of eλgeλ on HomF (V, W)eλ, we will have to apply g to a basis of the
condensed module and project the resulting images, which will in general spread out through
the entire space HomF (V, W), onto HomF (V, W)eλ by an application of eλ.

142 K. LUX, M. NEUNHÖFFER AND F. NOESKE

Owing to the limited time and space resources available, this approach gives rise to
two problems which are critical to any practical implementation. Firstly, when applying
g, a straightforward implementation working in the potentially huge dimF (V)× dimF (W)-
dimensional space would confine the applicability of this method to only pocket-size examples.
Secondly, when projecting with eλ, we must equally avoid constructing the idempotent in the
huge space.

The solution to both problems lies within the decomposition of HomF (V, W) into an internal
direct sum of suitable FK-submodules. We give this key idea in the following straightforward
theorem, which we state without its (obvious) proof.

Theorem 3.1. Let V↓K =
⊕s

i=1 Si and W↓K =
⊕t

j=1 Tj be decompositions into simple FK -

submodules Si and Tj with projection maps pVi : V → Si and pWj :W → Tj and inclusion maps
ιVi : Si→ V and ιWj : Tj →W . This implies the decomposition

HomF (V↓K , W↓K) =
s⊕
i=1

t⊕
j=1

Hi,j (2)

as an internal direct sum of FK -submodules, where Hi,j = ιWj ◦HomF (Si, Tj) ◦ pVi . Note that
Hi,j is an FK -submodule of HomF (V↓K , W↓K) since pWj and ιVi are FK -homomorphisms. Thus
we have

HomF (V↓K , W↓K)eλ =
s⊕
i=1

t⊕
j=1

Hi,jeλ (3)

as an internal direct sum of F -subspaces. Therefore, a basis of the whole space HomF (V, W)eλ
may be obtained by concatenating bases of the spaces Hi,jeλ for all 16 i6 s and 16 j 6 t.

For the rest of the paper, we will fix a sequence of simple FK-submodules S1, . . . , Ss of V
and simple FK-submodules T1, . . . , Tt of W such that V↓K =

⊕s
i=1 Si and W↓K =

⊕t
j=1 Tj ,

together with the projection and inclusion maps.
By Theorem 3.1, condensation preserves the direct sum decomposition (2), hence Lemma 4.2

solves the first problem of applying g without constructing its matrix on the whole space
HomF (V, W).

Therefore we are now left with the second problem, namely that of finding an efficient way
to describe the linear map on HomF (V, W) induced by eλ. As we will see, this is closely related
to finding a ‘nice’ basis for HomF (V, W), a problem we will deal with next.

Following the strategy of Theorem 3.1, we aim to construct a basis for the condensed space
HomF (V, W)eλ by concatenating bases for the direct summands of (3). Hence, we will take a
closer look at condensing homomorphisms between simple FK -modules. The starting point of
what follows is Lemma 3.2, which says that if we condense any space of F -linear maps between
two modules with a linear idempotent, we may identify the resulting space with a space of
FK -homomorphisms. This will be very useful later.

Lemma 3.2. Let V be an FK -module. Denote by V λ the FK -module with the same
underlying F -space structure and the (twisted) K-action given by v ∗ k := λ(k)vk. Then, noting
that HomF (V, W) = HomF (V λ, W), we obtain that the F -linear map on HomF (V, W) induced
by e1 and the F -linear map induced by eλ on HomF (V, W) (= HomF (V λ, W)) are identical.

Proof. Let ϕ ∈HomF (V λ, W) = HomF (V, W). We have

ϕe1(v) =
∑
k∈K

ϕ(v ∗ k−1)k =
∑
k∈K

λ(k−1)ϕ(vk−1)k = ϕeλ(v).

Hence e1 and eλ induce the same F -linear map on HomF (V, W). 2

CONDENSATION OF HOMOMORPHISM SPACES 143

Remark 3.3. Considering V λ and e1 instead of V and eλ in Lemma 3.2 amounts to a basis
change for the algebra FK : the idempotent eλ is none other than the trace idempotent for the
group {λ(k−1)k | k ∈K 6 FK 6 FG} ∼=K, also contained in FK . Hence the transition from e1
to eλ is a basis change in FK from K to the isomorphic group.

The consequences of Lemma 3.2 are far-reaching: when deriving a basis of HomF (V, W)eλ
that allows an efficient computational treatment, we can focus on the case where λ is the trivial
character of K, by replacing V with its twist V λ.

For the remainder of this section, we shall therefore assume without loss of generality that
Λ is the trivial K-module and write e for the idempotent e1.

As a first consequence, we can deduce with the help of Schur’s lemma that homomorphisms
between simple FK -modules often condense to zero.

Corollary 3.4. Let S and T be simple FK -modules. Then we have

HomF (S, T)e=

{
0 if S �FK T,

α ◦ EndFK (S) if α is an FK -isomorphism in HomFK(S, T).

Note that E := EndFK (S) is a field and, as such, is isomorphic to the splitting field of S and T .

Proof. This follows from the fact that HomFK(S, T) = HomF (S, T)e, Schur’s lemma and
Wedderburn’s theorem on finite division rings. 2

The idea now is to consider how to use the isomorphism of Corollary 3.4 to our advantage.
Therefore, let us fix two isomorphic simple FK -summands S := Si 6 V↓K and T := Tj 6W↓K ,
and let us keep the notation of Corollary 3.4. Thus E denotes the splitting field of S and T .
We set n := [E : F] to be the degree of the extension and θ to be a primitive element of E
over F . Furthermore, set d := dimF S. We now give an alternative description of the projection
induced by e on HomF (S, T). We will show that this description yields a computationally more
efficient method for computing the action of e on HomF (S, T).

Definition 3.5. Let α ∈HomFK(S, T) be an isomorphism. We define a non-degenerate
symmetric bilinear form 〈· , ·〉 on HomF (S, T) by setting

〈ϕ, ψ〉 := trace(α−1 ◦ ϕ ◦ α−1 ◦ ψ)

for any two ϕ, ψ ∈HomF (S, T).

Lemma 3.6. We use the same notation as in Definition 3.5. The bilinear form 〈· , ·〉 is
K-invariant; that is,

〈ϕk, ψk〉= 〈ϕ, ψ〉

for all ϕ, ψ ∈HomF (S, T) and 〈ϕe, ψ〉= 〈ϕ, ψ〉 if ψ ∈HomFK(S, T).

Proof. Denoting the linear map induced by the action of k on S by kS and the linear map
induced by the action of k on T by kT , we have ϕk = kT ◦ ϕ ◦ k−1

S . Now, as kT ◦ α= α ◦ kS ,
the equality

α−1 ◦ ϕk ◦ α−1 ◦ ψk = kS ◦ α−1 ◦ ϕ ◦ α−1 ◦ ψ ◦ k−1
S

is immediate, and hence the first claim follows. The second statement follows similarly by
noting that k−1

T ◦ ψ = ψ ◦ k−1
S if ψ ∈HomFK (S, T). 2

Lemma 3.7. The complement of HomFK (S, T) in HomF (S, T) with respect to the projection
with e, namely the subspace HomF (S, T)(1− e), is given by HomFK(S, T)⊥, the orthogonal

144 K. LUX, M. NEUNHÖFFER AND F. NOESKE

complement with respect to the bilinear form of Definition 3.5. Hence the linear map induced
by e on HomF (S, T) is given by the orthogonal projection of HomF (S, T) onto HomFK(S, T).
Moreover, the restriction of the form 〈· , ·〉 to HomFK (S, T) is also non-degenerate.

Proof. By Lemma 3.6 we have that HomF (S, T)(1− e) is contained in the orthogonal
complement of HomFK (S, T) in HomF (S, T). Now, since 〈· , ·〉 is non-degenerate, we have
dimF HomF (S, T) = dimF HomFK (S, T) + dimF HomFK (S, T)⊥. Therefore we conclude that
HomF (S, T)(1− e) is equal to HomFK (S, T)⊥ as claimed. 2

The following lemma is relevant from a computational point of view.

Lemma 3.8. Let (b1, . . . , bn) be an F -basis of HomFK(S, T) and set

B := (〈bi, bj〉)16i,j6n,

that is, B is the invertible (Gram) matrix of the restriction of the bilinear form to HomFK (S, T)
with respect to the basis (b1, . . . , bn). Furthermore, for an arbitrary ϕ ∈HomF (S, T), define

κ(ϕ) := [〈ϕ, b1〉, . . . , 〈ϕ, bn〉] ·B−1.

Then the map

π : ϕ 7→
n∑
k=1

κ(ϕ)kbk

gives the projection of HomF (S, T) onto HomFK (S, T) induced by e; that is, we have π(ϕ) = ϕe.

Proof. The claim can be checked by a straightforward computation. 2

4. The practice

The aim of this section is to provide the means of addressing the problems stated at the
beginning of Section 3 computationally. To this end, we give details on the steps necessary to
realise the approach outlined theoretically in the previous section for practical computations.

Definition 4.1. For an FK -module V with a decomposition V = S1 ⊕ S2 ⊕ . . .⊕ Ss into
an internal direct sum of simple FK -modules as given above, we choose an F -basis of V as the
concatenation of bases Bi for the simple direct summands Si in such a way that for isomorphic
summands Si and Sj we have MBi(k) = MBj (k) for all k ∈K. Such a basis B is called FK -
symmetry adapted (or symmetry adapted if K is evident). If B is FK -symmetry adapted and
C is an FK -symmetry adapted basis of an FK -module W (with respect to a decomposition
W = T1 ⊕ T2 ⊕ . . .⊕ Tt into a direct sum of simple FK -submodules), then we say that B and
C are synchronised or in synchronicity if MBi(k) = MCj (k) for all k ∈K, given that Si and Tj
are isomorphic FK -modules. Note that in the latter case the F -linear map α ∈HomF (Si, Tj)
mapping Bi to Cj is actually an FK -isomorphism, and we will use it for the definition of the
bilinear form 〈· , ·〉 defined on HomF (Si, Tj) = α ◦ EndF (Si).

The power of Theorem 3.1 may now be illustrated by the following lemma. Owing to the
direct sum decomposition (2), we may apply a group element g to any homomorphism by
dealing successively with linear maps between the simple summands of V↓K and W↓K , namely
the spaces HomF (Si, Tj), which we consider to be subspaces of HomF (V, W) via their canonical
embeddings. In this way, we gain some independence from the dimensions of the FG-modules
V and W .

CONDENSATION OF HOMOMORPHISM SPACES 145

Lemma 4.2. Let V and W be FG-modules with FK -symmetry adapted bases B and C. Let
S and S′ (respectively, T and T ′) be members of the internal direct sum decomposition into
simple FK -submodules of V↓K (respectively, W↓K). Then, for a ϕ ∈HomF (S, T), we have

MBSBS′ (g−1) ·MCTBS (ϕ) ·MCT ′
CT (g) = MCT ′

BS′ (ϕ · g).

Proof. This is elementary. For the notation see Section 2. 2

Putting together Lemmas 4.2 and 3.8, we arrive at the following theorem, with which we
can overcome those problems stated at the beginning of Section 3.

Theorem 4.3. Let S, S′, T and T ′ be simple FK-modules with isomorphisms α ∈
HomFK(S, T) and α′ ∈HomFK(S′, T ′). Assume, furthermore, that the bases BS and CT , as
well as BS′ and CT ′ , are synchronised; that is, α(BS) = CT and α′(BS′) = CT ′ . Take E to be the
splitting field of S (and T) with primitive element θ and n := [E : F]. Similarly, let E′ denote
the splitting field of S′ (and T ′) whose primitive element is θ′ with n′ := [E′ : F].

Then the set {α ◦ θk | k = 1, . . . , n} is an F -basis of HomFK (S, T), the set {α′ ◦ θl | l =
1, . . . , n′} is an F -basis of HomFK (S′, T ′), and the image of the basis element α ◦ θk under
ege for some g ∈G has the coefficient vector

v := [〈(α ◦ θk) · ge, α′ ◦ θ′0〉, . . . , 〈(α ◦ θk) · ge, α′ ◦ θ′n
′−1〉] ·B′−1

with respect to the basis (α′ ◦ θ′l | 06 l 6 n′ − 1), where

B′ = (〈α′ ◦ θ′i−1, α′ ◦ θ′j−1〉)16i,j6n′ = (trace(θ′i−1θ′j−1))16i,j6n′ .

Thus, upon setting

M := MBSBS′ (g−1) ·MCTBS (α ◦ θk) ·MCT ′
CT (g) =:M = (mi,j) ∈ Fn

′×n′
,

we obtain

v = [trace(M ·MCT ′
BS′ (α′ ◦ θ′0)), . . . , trace(M ·MCT ′

BS′ (α′ ◦ θ′n
′−1))] ·B′−1.

Proof. By Lemma 3.2, the idempotent e fixes every element of E; in particular, it fixes a
basis vector α ◦ θk for any k ∈ {0, . . . , n− 1}. Therefore we have α ◦ θk · ege= α ◦ θk · ge. By
Lemma 4.2, the action of g on α ◦ θk is given by the matrix M with respect to the chosen
bases. Now, by Lemma 3.2, the multiplication of (α ◦ θk)g by e is realized by the orthogonal
projection of (α ◦ θk)g onto HomFK (S′, T ′), that is, by applying Lemma 3.8. Also, note that

〈α′ ◦ θ′k, α′ ◦ θ′l〉= trace(α′−1 ◦ (α′ ◦ θ′k) ◦ α′−1 ◦ (α′ ◦ θ′l)) = trace(θ′kθ′l). 2

Remark 4.4. In the above formulae, we have

MCTBS (α ◦ θk) = MBSBS (θk) and MCT ′
BS′ (α′ ◦ θ′k) = MBS′

BS′ (θk)·

Theorem 4.3 illustrates that a large portion of the computational effort in the calculation
of representing matrices for elements of the condensed group algebra is devoted to matrix
multiplications involving the primitive elements of the splitting fields. It is therefore desirable
to choose special bases for the vector spaces involved in such a manner that the primitive
elements are represented by matrices which are more amenable to a practical implementation.

Definition 4.5. For an F -basis BS of S, take {b1, . . . , bd/n} ⊆ BS to be a subset which is
an E-basis (recall that E = EndFK(S) is the splitting field of S and θ ∈ E a primitive element).
Using these elements, we define the sequence

θBS := (b1, b1θ, . . . , b1θn−1, b2, b2θ, . . . , b2θ
n−1, . . . , bd/n, bd/nθ, . . . , bd/nθ

n−1),

146 K. LUX, M. NEUNHÖFFER AND F. NOESKE

which is again an F -basis of S; we call it θ-adapted or, more generally, adapted to the splitting
field of S.

If B is a synchronised semi-simplicity basis, then to preserve synchronicity when
concatenating the θ-adapted bases of Definition 4.5, we construct them in the following way.

Remark 4.6. Let S′ be a simple FK -module isomorphic to S. If BS and BS′ are
synchronised and {i1, . . . , id/n} ⊆ {1, . . . , d} are the indices of the elements of BS chosen to
obtain θBS as in Definition 4.5, then choosing the subsequence of elements with the same
indices in BS′ yields a θBS′ which is in synchronicity with θBS .

Proof. By the synchronicity of BS and BS′ , every element of K acts the same way on both
bases. Also, θ commutes with every element of K. Hence θBS and θBS′ are synchronised. 2

The bases as in Definition 4.5 facilitate an F -basis for HomF (S, T) which is particularly easy
to work with.

Lemma 4.7. Let θBS and θCT be θ-adapted synchronised bases for S and T , and let α be
the FK -isomorphism mapping θBT to θCS . Then

M
θCT
θBS (α ◦ θk) =M

θBS
θBS (θk) =

C(µθ)k 0 . . . 0

0 C(µθ)k
. . .

...
...

. . .
. . . 0

0 . . . 0 C(µθ)k

where C(µθ) denotes the companion matrix

C(µθ) =

0 1 0 . . . 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 0 1
a0 a1 . . . an−2 an−1

 ∈ F
n×n

of the minimal polynomial µθ =Xn −
∑n−1
i=0 aiX

i of θ.

Proof. By our chosen bases, M
θBS
θBS maps the primitive element θ to the block-diagonal matrix

having C(µθ) along the diagonal, and M
θCT
θBS (α) is the identity matrix. 2

Thus, by choosing synchronised bases which are adapted to splitting fields, we may assume
a block-diagonal matrix as in Lemma 4.7 in the formula of Theorem 4.3, instead of an
arbitrary representing matrix for α ◦ θ. In this way, we are able to exploit the special form
of a companion matrix, ultimately avoiding straightforward but costly matrix multiplications
wherever possible. The details of implementing this approach in our algorithm are given in
Section 6.

5. Precondensation

The action of an element eλgeλ for some g ∈G on HomF (V, W)eλ is the same as the action
of geλ on HomF (V, W)eλ. Hence, as we can identify HomF (V, W)eλ with HomF (V λ, W)e1
by means of Lemma 3.2, we may equivalently consider the action of g on the special basis of
HomF (V λ, W)e1 constructed in Section 3. This also allows us to project the images of these

CONDENSATION OF HOMOMORPHISM SPACES 147

basis vectors under g back onto the fixed space HomF (V λ, W)e1 without explicitly applying
an idempotent.

Therefore, for the computation of a representation of eλgeλ on the module HomF (V, W)eλ,
a non-trivial FK -module Λ is relevant only at the very beginning of the computation: as
the special basis of the condensed homomorphism space relies only on the action of K on
HomF (V, W), replacing V↓K by V λ↓K and eλ by e := e1 lets us determine the action of ege on
HomF (V, W)e.

To this end, we readily identify two basic steps from Section 3 to form the framework of an
algorithmic implementation.
Step 1. Determine the composition factors {S1, . . . , Ss} and {T1, . . . , Tt} of V↓K and W↓K ,

respectively, along with their splitting fields. Compute the mutually synchronised
K-semi-simplicity bases for both V and W , which are adapted to the splitting fields
of the composition factors, and determine the matrix B as in Lemma 3.8.

Step 2. For all pairs of composition factors (S, T) from Step 1 for which S ∼=FK T , compute
the corresponding part of the result matrix by Theorem 4.3.

Obviously, while Step 2 needs to be repeated every time, the output of Step 1 only has to
be computed once, if we wish to compute representing matrices for several different algebra
elements eg1e, . . . , egke ∈ eFGe. Because in Step 2 the actual output matrix is produced, we
call this step the condensation step. The one-off preparatory calculations of Step 1 are summed
up under the name precondensation.

Our theoretical development in Section 3 already illustrates that a practical implementation
of Theorem 4.3 relies most importantly on the underlying bases of the subspaces V and W .
As we will show, the chosen approach, namely the use of synchronised and adapted bases, not
only allows a nice description of the algorithm but also forms the backbone of our efficiency
considerations.

Of course, the task of computing the composition factors of V↓K and W↓K , as well as their
splitting fields, is accomplished by a run of the MeatAxe [9, 12]. But as a key element
of precondensation is calculation of the synchronised semi-simplicity bases, the output of
current MeatAxe implementations in GAP or as the C-MeatAxe 2.4 [10] turns out to be
insufficient for our purposes. For this task, we employ our own GAP implementation of the
MeatAxe, which will be made available in the form of the GAP package chop. It covers the
basic functionality of the C-MeatAxe but also features an augmented decomposition algorithm
Chop, which lets us compute the necessary bases easily.

Definition 5.1. Let V be a finite-dimensional module for some finite-dimensional F -
algebra A, and let 0 = V0 � V1 � . . .� Vl = V be a composition series of V . Then an F -basis
B of V is said to be adapted to the composition series if the matrix representation of every
a ∈A on V with respect to B is a block lower triangular matrix whose diagonal block Bi gives
the matrix representation of a on the composition factor Vi/Vi−1 for all i= 1, . . . , l.

In the special case of determining a composition series of a semi-simple module, the adapted
basis is the foundation on which we build a semi-simplicity basis. The basic idea is as follows.
Since we have an explicit basis of the semi-simple module, it is easy to define an F -projection
π onto a quotient by a submodule of the composition series. We transform π into an FK-
module endomorphism by applying the trace map Tr : HomF (V, W)→HomFK(V, W), that is,
by defining

Tr(π)(v) :=
1
|K|

∑
k∈K

π(vk−1)k = πe.

Successively applying these endomorphisms to the composition series adapted basis will then
yield a semi-simplicity basis.

148 K. LUX, M. NEUNHÖFFER AND F. NOESKE

Lemma 5.2. Let B be a basis of V↓K which is adapted to a composition series, and let S
be a submodule in this composition series and call the associated quotient Q. Then we may
partition B = BS t BQ into a submodule and quotient part. By the definition of B we have

MB(a) =
[
MBS (a) 0
∗ MBQ(a)

]
for every a ∈ FK. Let π ∈ EndF (V) be the projection onto S in the vector space decomposition
V = 〈BS〉 ⊕ 〈BQ〉 induced by the partition of B. Setting B′Q := (id− Tr(π))(BQ) then gives a
basis BS t B′Q of V↓K which yields

MBStB′
Q

(a) =
[
MBS (a) 0

0 MBQ(a)

]
for every a ∈ FK. Note that the matrix representation on the quotient is preserved.

Proof. Since id− π is the projection onto a vector space complement of S, the FK-
homomorphism id− Tr(π) projects onto a K-invariant complement of S. The matrix
representation on the quotient is maintained because for all v ∈ BQ and k ∈K the equation
(id− Tr(π))(v)k = vk − Tr(π)(vk) = (id− Tr(π))(vk − π(vk)) holds. 2

To quickly compute a semi-simplicity basis from a basis which is adapted to a composition
series, we exploit the inherently recursive nature of this problem: once we obtain the direct
sum of a submodule and a quotient by applying Lemma 5.2, we may restrict all further
computations to either the submodule or the quotient. A subsequent iteration of this procedure
benefits greatly from the decreasing sizes of the matrices involved. In order to maximise this
speed-up, we aim to split the currently considered module into a submodule and a quotient of
approximately the same size.

Algorithm 1 SemiSimplicityBasis

Input: semi-simple module V with basis B adapted to a composition series C.
Output: B is a semi-simplicity basis for V .
Choose S 6 V in C such that dimF S is close to 1

2 dimF V .
Extend a basis BS for S to a basis B = BS t BQ of V (see Lemma 5.2), thus defining an
F -projection π : V � S.
Compute Tr(π) with respect to the basis B.
BQ← (id− Tr(π))(BQ) {Lemma 5.2}
if S is reducible then
BS ← SemiSimplicityBasis(S, BS)

end if
if Q is reducible then
BQ← SemiSimplicityBasis(Q, BQ)

end if

Lemma 5.3. Let K ′ 6K be a subgroup and denote by K ′\K a right transversal of K ′ in
K. Let V be some FK -module with basis B, and choose some v ∈ V . Then we have

MB(Tr(π)) =
1
|K|

∑
k∈K′\K

MB(k−1)

(∑
k′∈K′

MB(k′−1)MB(π)MB(k′)

)
MB(k).

Proof. As we may write every element x ∈K uniquely as x= k′k for a k′ ∈K ′ and a
k ∈K ′\K, and since MB(k′k) = MB(k′)MB(k), the claim follows. 2

CONDENSATION OF HOMOMORPHISM SPACES 149

To use Lemma 5.3 to its full extent, we have to apply it several times: after choosing a
subgroup chain {1}=K0 �K1 � . . .�Kl =K for K, we may iterate Lemma 5.3, and therefore
we only need to compute the transversal elements in Ki−1\Ki for i= 1, . . . , l. Thus, instead of
computing Tr(π) and needing 2|K|matrix multiplications, we now only need 2

∑l
i=1[Ki :Ki−1].

For example, choosing K to be an `-group for some prime ` different from p with |K|= `m, there
exists a composition series of K of length m whose composition factors are all cyclic of order
`. Thus Lemma 5.3 allows us to compute the projection with only 2m` matrix multiplications,
in contrast to the 2`m that a straightforward implementation would take.

Being able to quickly calculate semi-simplicity bases, we now turn to the second open
problem, that of synchronising bases and adapting the basis of a composition factor to a
primitive element of its splitting field (see Definition 4.5). The nature of these two tasks allows
a simultaneous treatment of both.

To compare two simple modules, that is, to test whether they are isomorphic or not, the
MeatAxe uses Parker’s standard basis technique (see [9]). Of course, in compliance with
Definition 4.1, standard bases may be used to achieve synchronicity, because with respect to
a standard basis every isomorphic composition factor affords the same matrix representation.
In general, however, a standard basis of a composition factor does not need to be adapted to
a primitive element of its splitting field. Therefore we have to do a little more work here.

During the computation of the module’s composition factors, for every isomorphism type
of an FK -module S which occurs in the composition series, the degree of its splitting field is
determined. This is done by the method introduced by Holt and Rees in [2, Section 3].

In order to produce θ-adapted synchronised bases for two isomorphic modules, we transform
both to standard basis first. Then, by Remark 4.6, the above procedure yields the desired
result. In particular, the basis change required only needs to be calculated once, and can then
be applied to any isomorphic module in standard basis.

Therefore, we may incorporate the computation of a module’s synchronised basis which is
adapted to the primitive elements of the splitting fields of its composition factors into the
precondensation algorithm as follows.

While chopping a module into its composition factors, the MeatAxe compares every
composition factor found with every element in the database of isomorphism types of
composition factors already found. In particular, it determines the degree of the splitting
field. If the composition factor is isomorphic to an already known one in the database, it is
transformed into the corresponding standard basis. Therefore, in light of Theorem 4.3, to ensure
that the bases for the two restricted modules V↓K and W↓K are mutually synchronised (that is,
any two isomorphic composition factors afford the same matrix representation, irrespective of
the module in which they occur), we allow as additional input into the MeatAxe (the program
Chop, to be precise) a database of simple modules in standard basis. Then an execution of Chop
will automatically produce bases which are synchronised properly.

In the precondensation step, we now only need to adapt the basis of every module in the
database to its splitting field by employing the method of Holt and Rees. The resulting basis
change matrix is then applied to all subbases of the whole module’s basis which correspond to
composition factors isomorphic to the database module.

If the field F is already a splitting field for a composition factor, then we do not need to com-
pute a basis which is adapted to this splitting field, of course; a standard basis is sufficient in this
case. Also note that the modules in the database will always be (only) in standard basis form.

Summing up, the following are the preparatory computations constituting the necessary
calculations which provide the bases for Theorem 4.3 to be applied.

(i) If Λ is non-trivial, then replace V by V λ and eλ by e := e1.
(ii) Determine the composition factors of V↓K and compute a basis of V↓K which is adapted

to the composition series found.

150 K. LUX, M. NEUNHÖFFER AND F. NOESKE

(iii) Using the database produced in the previous step, find the composition factors of W↓K .
(iv) As in [2], find primitive elements for the splitting fields of the composition factors (that

is, their endomorphism rings), and adapt their bases to these elements.
(v) Convert the adapted bases of both V↓K and W↓K to semi-simplicity using Lemmas 5.2

and 5.3.
The final ingredient needed for the application of Theorem 4.3 in the condensation step is

knowledge of the Gram matrix B of Lemma 3.8 for every pair (S, T) of composition factors
for which S ∼= T .

In other words, given the primitive element θ of E := EndFK (S), where E is an extension of
the ground field F of degree n, we need to determine B = (〈α ◦ θi−1, α ◦ θj−1〉)16i,j6n. As we
choose θ-adapted synchronised bases for S and T , Definition 3.5 gives

〈α ◦ θi, α ◦ θj〉= trace(M
θBS
θBS (θi+j)) =

d

n
trace(C(µθ)i+j)

by using Lemma 4.7, where C(µθ) is again the companion matrix of the minimal polynomial
of θ. Note that d/n 6= 0 in F , as S is an absolutely irreducible d/n-dimensional EK-module.
Therefore this information is easily determined after calculating a primitive element as outlined
above, if we store its minimal polynomial. The inverse of B is recorded as part of its
corresponding module in the database.

We close this section by briefly discussing a comparison with the precondensation step in
the C-MeatAxe rendition of tensor condensation as described in [5]. In contrast to the peak
word method used there, which is highly probabilistic and most likely cannot be analysed
rigorously, we use a completely deterministic approach here. Both methods have their merits
and disadvantages. Peak words are sometimes difficult to find at all; this happened frequently
in cases where our methods succeeded easily. On the other hand, as soon as the orders of some
composition factors of the condensation subgroup are divisible by some huge prime, our method
is essentially doomed, even though it might still be possible to find peak words. Therefore, it
is essentially meaningless to compare the performance of the two methods, which is why we
refrain from doing so in this paper. Users have to be aware of both methods and choose the
one which is more appropriate for the problem at hand.

6. Condensation

After completing the necessary precondensation calculations, we may start the actual
condensation of a group element g ∈G. As we have already seen in Section 1, the group G
acts on HomF (V, W) by taking a linear map ϕ to the homomorphism mapping any v ∈ V to
ϕ(vg−1)g. Therefore the input to our condensation algorithm consists of two matrices giving,
respectively, the action of g−1 on V and g on W . Each is, of course, written with respect to
synchronised semi-simplicity bases B and C which are adapted to the splitting fields of the
composition factors. From this we calculate a matrix for the action of the condensed element
ege on the condensed homomorphism space HomF (V, W)e. The output matrix is constructed
by multiple applications of Theorem 4.3. With each call, the matrix product calculated involves
submatrices of both MB(g−1) and MC(g).

Thus, as we are mostly dealing with submatrices of larger matrices, the introduction of
the following notation is convenient. Let A ∈ Fm×n be a matrix, and let r ∈ {1, . . . , m} and
s ∈ {1, . . . , n}. For two strictly increasing sequences of integers 16 i1 < i2 < . . . < ir 6m and
16 j1 < j2 < . . . < js 6 n, we set A[j1,...,js]

[i1,...,ir]
to be the r × s submatrix (aik,jl)16k6r,16l6s of A.

If [i1, . . . , ir] = [1, . . . , m] or [j1, . . . , js] = [1, . . . , n], then we omit the respective range.
Considering the projection onto HomF (V, W)e of Lemma 3.8, we see that the result

computed in Theorem 4.3 does not require knowledge of all entries of the matrix product
M . Since, in particular, with respect to the specially constructed bases the matrix giving the

CONDENSATION OF HOMOMORPHISM SPACES 151

Figure 1. Illustration of the proof of Theorem 6.1.

primitive element is of the simple block-diagonal form of Lemma 4.7, we only need the very same
diagonal blocks of M . Therefore we can reformulate Theorem 4.3 in a more implementation-
friendly version, ultimately avoiding unnecessary calculations. Note that for the complexity
analysis in the proof we rely on some lemmas presented after the theorem.

Theorem 6.1. We use the notation of Theorem 4.3. For brevity we define L := M
θBS
θ′BS′

(g−1)

and R := M
θ′
CT ′

θCT (g). Also, let us denote the companion matrix of µθ by C(µθ). Then the
coefficient vector vB′ of Theorem 4.3 can be calculated by evaluating the n′ × n′ matrix

N :=
d′/n′∑
i=1

d/n∑
j=1

L
[(j−1)n+1,...,jn]
[(i−1)n′+1,...,in′] · C(µθ)k ·R[(i−1)n′+1,...,in′]

[(j−1)n+1,...,jn]

and computing trace(N · C(µθ′)l−1) for l = 1, 2, . . . , n′. The resulting vector vB′ then has to
be multiplied from the right by B′−1 to get v.

Evaluating all this for k = 0, 1, . . . , n− 1 requires, in total, at most

2dd′(n+ n′ − 1) + n′(2n′2 + n′ − 2)

elementary operations in the field F . Here we count both multiplications and additions as
elementary field operations.

Proof. By the θ-adaptedness of our bases, we can cut L into n′ × n blocks and R into n× n′
blocks as illustrated in Figure 1 (there we have d/n= 4 and d′/n′ = 3).

The first idea for avoiding unnecessary computations is that to evaluate the traces of the big
d′ × d′ matrices L ·MBTBS (α ◦ θk) ·R ·MBT ′

BS′ (α ◦ θ′l), we only have to compute the grey diagonal
n′ × n′ blocks of L ·MBSBS (θk) ·R, owing to the nice block-diagonal structure of MBS′

BS′ (θ′l) and
Remark 4.4. Note that the blocks marked with a star in Figure 1 are not necessarily equal to
0, but computing them is not needed!

The second idea is to use the sparseness of the companion matrices that occur, together with
caching of intermediate results.

Let kA := L ·MBSBS (θk) ·R. To compute the ith grey block kA
[(i−1)n′+1,...,in′]
[(i−1)n′+1,...,in′] of kA, we have

to add the products

L
[(j−1)n+1,...,jn]
[(i−1)n′+1,...,in′] · C(µθ)k ·R[(i−1)n′+1,...,in′]

[(j−1)n+1,...,jn]

for j = 1, . . . , n. Because we need these products for all k = 0, . . . , n− 1, we can compute
the products L[(j−1)n+1,...,jn]

[(i−1)n′+1,...,in′] · C(µθ)k inductively by just multiplying some previously known

152 K. LUX, M. NEUNHÖFFER AND F. NOESKE

matrix by a companion matrix from the right. From the complexity results in Lemma 6.5, it
follows that we need at most d/n · (n− 1) · 2n′n elementary field operations to compute all
products L[(j−1)n+1,...,jn]

[(i−1)n′+1,...,in′] · C(µθ)k for fixed i and all j, k. Given those products, evaluating

the ith grey block kA
[(i−1)n′+1,...,in′]
[(i−1)n′+1,...,in′] of kA for all k needs at most d/n · n′2(2n− 1) elementary

field operations for the matrix multiplications with the R-parts, plus another d/n additions of
n′ × n′ matrices to the final result, requiring d/n · n′2 elementary field operations.

All these numbers of elementary field operations have to be multiplied by d′/n′, as we have
to compute all grey n′ × n′ blocks of all kA. However, owing to the fact that all n′ × n′ diagonal
blocks of MBS′

BS′ (θ′l) are equal, we do not have to process these blocks separately but only need
to compute their sum. This is illustrated in the second row of Figure 1.

Summing up these numbers results in

d′

n′

(
d

n
(n− 1) · 2n′n+

d

n
· n′2(2n− 1) +

d

n
· n′2

)
= 2dd′ · (n+ n− 1′),

which is the first summand of the number of operations in the theorem.
It remains to evaluate the traces of N · C(µθ′)l for l = 0, . . . , n′ − 1. Here we can use the same

trick as above and compute these products by inductively multiplying previously computed
matrices by the companion matrix C(µθ′) from the right. Thus, to compute all these matrices
needs at most (n′ − 1) · 2n′2 elementary field operations, again by Lemma 6.5. To evaluate the
traces then requires another n′ · (n′ − 1) additions.

Since these traces form the vector vB′ from Theorem 4.3, we still have to multiply this vector
from the right by the stored n′ × n′ matrix B′−1, which needs another n′(2n′ − 1) elementary
field operations.

Summing up these numbers results in

(n′ − 1) · 2n′2 + n′ · (n′ − 1) + n′(2n′ − 1) = n′(2n′2 + n′ − 2)

elementary field operations, which is the second summand of the number given in the theorem.
Note that in an actual implementation, some optimisation will be done if zeros are

encountered, and thus our numbers are upper bounds. 2

Under certain circumstances Theorem 6.1 allows a further simplification.

Corollary 6.2. In the case where F is a splitting field for S and T as well as for S′ and
T ′, the corresponding coefficient vector of Theorem 4.3 is in fact only a scalar and is given by

1
d′

d′∑
i=1

L[i] ·R[i];

that is, it is obtained by adding the standard scalar products of the vectors L[i] and R[i] for
all i. In this case, it only takes 2dd′ + 1 elementary field operations to compute the result.

Proof. We observe that if n= 1, then we have C(µθ) = 1 in Theorem 6.1, and therefore we
may omit this matrix from the product. If n′ is also equal to 1, then we only have to compute
the diagonal of L ·R in Theorem 6.1 and sum up all entries. The theorem directly specialises
to the claim. Note that the additional 1 in the expression 2dd′ + 1 of field operations is due to
the division by d′. 2

It is now easy to formulate the condensation algorithm. However, to prepare for this
endeavour we need to release a barrage of notation. As we have detailed in Section 3, a
basis for the condensed space HomF (V, W)e may be obtained by embedding and concatenating
bases for the FK -homomorphism spaces HomFK (S, T) whenever S ∼= T for composition factors
S and T . Thus, let {S1, . . . , Sr} and {T1, . . . , Tr} denote, respectively, a complete set of

CONDENSATION OF HOMOMORPHISM SPACES 153

isomorphism types of composition factors occurring simultaneously in V↓K and W↓K such
that Si ∼= Ti for i= 1, . . . , r. Let si be the multiplicity of Si in V↓K and, analogously, let
ti be the multiplicity of Ti in W↓K . Denote the different direct summands of isomorphism
type Si occurring in V↓K by S

(1)
i , . . . , S

(si)
i and those of isomorphism type Ti occurring in

W↓K by T
(1)
i , . . . , T

(ti)
i . Furthermore, we use the notation of Theorems 4.3 and 6.1; in other

words, di gives the dimension of Si and Ti, and ni gives the degree of the corresponding
splitting field. Let θi denote a primitive element of this splitting field, considered as an element
of EndFK(Si).

Theorem 6.3. Using the notation from above, we obtain the following.
(i) Algorithm 2 computes the representing matrix of ege on HomF (V, W)e with respect to

a basis adapted to the decomposition in equation (3).
(ii) Execution of Algorithm 2 needs at most

r∑
l=1

r∑
l′=1

sl∑
s=1

sl′∑
s′=1

tl∑
t=1

tl′∑
t′=1

2dldl′ (nl + nl′ − 1) + nl′ (2nl′ + nl′ − 2)

=
r∑
l=1

r∑
l′=1

slsl′tltl′ [2dldl′ (nl + nl′ − 1) + nl′ (2nl′ + nl′ − 2)]

elementary field operations.

Algorithm 2 HomCond — Condensation Algorithm

Input: matrices MB(g−1) and MC(g) for some g ∈G with
synchronised, splitting field adapted semi-simplicity bases B and C.

Output: the matrix m gives the action of ege on HomF (V, W)e.
m← 0 ∈ FD×D {D = dimF HomF (V, W)e}
for 16 l 6 r do

for 16 l′ 6 r do
for 16 s6 sl do

for 16 s′ 6 sl′ do
for 16 t6 tl do

for 16 t′ 6 tl′ do
Evaluate an expression N as in Theorem 6.1 for

L←M
θlB

S
(s)
l

θ′
l′B

S
(s′)
l′

(g−1) and R←M

θ′
l′ C

T
(t′)
l′

θlC
T

(t)
l

(g)

giving rise to the nl × nl′ matrix that describes the action
of ege on HomFK (S(s)

l , T
(t)
l) projected onto HomFK (S(s′)

l′ , T
(t′)
l′),

and put the result in the correct place in m.
end for

end for
end for

end for
end for

end for

Proof. This is all evident from Theorem 6.1 and upon putting everything together as
described in Theorem 3.1. 2

154 K. LUX, M. NEUNHÖFFER AND F. NOESKE

Remark 6.4. The six nested loops in Algorithm 2 and the corresponding six nested sums
in the analysis in Theorem 6.3(ii) render it particularly important to optimise whatever is
happening within these loops. We reap such optimisations from our special choice of bases,
which allow for easy projection using traces. The resulting improvements in computational
complexity over the tensor condensation implementation in the C-MeatAxe 2.4 explain well
the performance improvements exhibited in the next section.

In the splitting field case (all nl = 1) this can be seen especially easily. The dominant term
within the six sums is 2dldl′ . In the description of tensor condensation in [5], the same six
nested loops are employed as here; however, in the innermost loop two matrix multiplications
A ·B · C with A ∈ F dl′×dl , B ∈ F dl×dl and C ∈ F dl×dl′ , plus a multiplication of the resulting
dl′ × dl′ matrix with a vector of length dl′ , are done. This amounts to

dl′ (2dl − 1)dl + dl′ (2dl − 1)dl′ + 2dl′ = dl′ ((2dl − 1)dl + (2dl + 1)dl′ + 2)

elementary field operations. The dominant term in this expression is (dl + dl′)2dldl′ , which
is greater by a factor of (dl + dl′), the sum of the dimensions of the two K-composition
factors. Note that, of course, this factor varies greatly as we go through the different pairs
of isomorphism types of K-composition factors (the different summands in the l and l′ loops).
Furthermore, these different contributions are weighted by the multiplicities sl, sl′ , tl and tl′ .
Therefore it is impossible to give a nice expression for the overall speed-up factor, since it will
always be a weighted average over the individual factors (dl + dl′) for the different summands.
In any case, we improve the critical part of the computation in the innermost loop by a factor
of the sum of the dimensions of the two composition factors at hand. In the non-splitting field
situation the same is true, but the weights of the contributions are changed by the values of
nl and nl′ . This analysis explains the observed speed-ups well.

We conclude this section with a lemma about numbers of elementary field operations for
basic vector and matrix arithmetic.

Lemma 6.5 (Complexity of basic matrix arithmetic). Let F be a field, and let M ∈ F a×b
andN ∈ F b×c be matrices over F . Furthermore, let v ∈ F 1×b be a row vector. In all the following
statements, we count additions as well as multiplications of elements of F as ‘elementary field
operations’.

Then, the matrix product M ·N can be computed using at most a · (2b− 1) · c elementary
field operations. The product v ·N of the vector v and the matrix N can be computed using
at most (2b− 1) · c elementary field operations.

For a= c, the trace(MN) of the product MN can be computed using at most 2ab− 1
elementary field operations.

If b= c and N is a companion matrix, the product M ·N can be computed using at most 2ab
elementary field operations, and the product v ·N using at most 2b elementary field operations.

Proof. The product v ·N can be computed by multiplying row i of N with the ith entry of v
for i= 1, 2, . . . , b and summing up all the results. The scalar multiplications need bc elementary
field operations, and then we have to do b− 1 additions of vectors of length c, resulting in a
total of (2b− 1) · c operations.

To compute the matrix product M ·N , we have to multiply each row of M from the right
by N . Thus this can be done in a · (2b− 1) · c elementary field operations, by the results in the
previous paragraph.

If a= c, then evaluating trace(MN) amounts to forming all scalar products of the ith row
of M with the ith column of N and adding up all these scalars. Since such a scalar product
costs 2b− 1 elementary field operations and summing up needs another a− 1 additions, the
total number of operations needed is a(2b− 1) + a− 1 = 2ab− 1.

CONDENSATION OF HOMOMORPHISM SPACES 155

Now let b= c and let N be a companion matrix. Then a multiplication of a vector v by N
amounts to shifting the vector v one entry to the right, multiplying the rightmost entry of v
by the last row of N and adding the two resulting vectors. Neglecting the shift, this needs 2b
elementary field operations. The multiplication of M by N can thus be done using at most 2ab
elementary field operations. 2

Remark 6.6. In the preceding lemma we always give upper bounds, since in practical
applications the number of necessary operations can be reduced by using zeros that occur
in the matrices.

7. Performance

In this section we present empirical evidence for the performance of our new algorithm.
For two FG-modules V and W , the space of homomorphisms HomF (V, W), viewed as an

FG-module by the action from formula (1), is isomorphic to the tensor product V ∗ ⊗W ,
where V ∗ denotes the contragredient module of V . Thus we can compare the result of the
condensation of HomF (V, W) with that of V ∗ ⊗F W and show the difference in performance
between our algorithm and the tensor condensation algorithm in the C-MeatAxe.

In Table 1 we present timings of computations, which were all done on a machine with a
Pentium Core2 Quad Q6600 processor running at 2.4 GHz. The first column, marked G, shows
the isomorphism type of G; the second column, marked q, shows the number of elements of the
base field F ; the third and fourth columns contain the dimensions of the two modules, and the
product of those dimensions is the dimension of both HomF (V, W) and V ∗ ⊗F W . The next two
columns show the order |K| of the condensation subgroup and the dimension of the condensed
module. The columns marked HC and TC contain runtimes in seconds for the condensation
of one element using HomCond (HC) and for the condensation of one element using tcond
(TC). Finally, the last column, marked Mem, contains the main memory requirement for a
GAP session performing only the HomCond condensation without the precomputations. Note
that an empty GAP session alone needs already about 100 MB just to load the library and
packages on a 64-bit machine.

For the group Fi22, we used as condensation subgroup a Sylow 3-subgroup of the 12th
maximal subgroup, which is isomorphic to the symmetric group S10. For HN, we used
the extraspecial normal subgroup of order 21+8 in the 4th maximal subgroup, which is of
isomorphism type 21+8 · (A5 ×A5) · 2. For Fi23, we used the extraspecial normal subgroup of
order 31+8 in the 7th maximal subgroup, which is of isomorphism type 31+8 · 21+6 · 31+2 · 2S4.
For Ly, we used a non-normal subgroup of order 3125 in the 5th maximal subgroup 51+4 : 4S6.

The modules for the group Fi23 in characteristic 2 have non-absolutely irreducible
constituents when restricted to the condensation subgroup, whereas all the other examples
demonstrate the splitting field case.

One should not expect this comparison to entirely exhibit the improved complexity of our
algorithm as mentioned in Remark 6.4. The two implementations are substantially distinct:

Table 1. Performance of HomCond and tcond (with times in seconds).

G q dim V dim W |K| CDim HC TC Mem

Fi22 7 429 78 81 436 0.40 0.54 105
HN 5 626 626 512 1096 0.208 9.98 116
HN 5 8152 626 512 11096 308 2145 599
Fi23 2 1494 1494 19683 684 10.4 26.0 175
Fi23 2 19940 19940 19683 25542 61200 227591 6911
Ly 3 651 651 3125 185 2.357 5.33 104

156 K. LUX, M. NEUNHÖFFER AND F. NOESKE

the C-MeatAxe is implemented completely in the C programming language, whereas our
programs are implemented in the GAP language, with only the low-level finite field arithmetic
implemented in C. Also, the implementations of the finite field arithmetic are quite different:
the C-MeatAxe uses table lookup; the arithmetic in the cvec package (see [7]) used in our
programs employs machine word operations and no tables. Furthermore, in fine details such as
cache-awareness, already the nature of how the C-MeatAxe and GAP organise their memory
accesses leads to a significant variance.

Note that we do not show the precomputation times, as the methods for obtaining a K-
semi-simple basis are incomparable: whereas the C-MeatAxe uses a probabilistic approach
based on peak words (see [4]) throughout, our implementation uses the deterministic techniques
described in Algorithm 1.

The two techniques can behave completely differently in different situations. The major part
of the precomputation in our algorithm is computing a composition series and semi-simplicity
bases of the modules V and W restricted to the condensation subgroup. In particular, for
the bigger modules, such as the one for Fi23 with dimension 19940 or the one for HN with
dimension 8152, this takes a substantial amount of time. In the case of the C-MeatAxe,
we found that in some examples its peak word search does not finish in any reasonable
amount of time, forcing us to use ad hoc methods to come up with the input data for tcond.
The remaining precomputation to compute synchronised bases is basically negligible for our
programs; the corresponding precomputations computing P - and Q-matrices in the tensor
condensation programs of the C-MeatAxe are also negligible.

Acknowledgements. We are indebted to Jon Thackray for many interesting discussions on
the subject of his own optimisations of the tensor condensation programs. This research was
partially supported by the DFG grant HI 895/1-1.

References

1. J. A. Green, Polynomial representations of GLn, Lecture Notes in Mathematics 830 (Springer, Berlin,
1980).

2. D. F. Holt and S. Rees, ‘Testing modules for irreducibility’, J. Aust. Math. Soc. Ser. A 57 (1994)
1–16.

3. F. Lübeck and M. Neunhöffer, ‘Direct condense 2’, 2000, http://www.math.rwth-aachen.de/∼DC/.
4. K. Lux, J. Müller and M. Ringe, ‘Peakword condensation and submodule lattices: an application of the

Meat-Axe’, J. Symbolic Comput. 17 (1994) 529–544.
5. K. Lux and M. Wiegelmann, ‘Condensing tensor product modules’, The atlas of finite groups: ten years

on (Birmingham, 1995), London Mathematical Society Lecture Note Series 249 (Cambridge University
Press, Cambridge, 1998) 174–190.

6. J. Müller and J. Rosenboom, ‘Condensation of induced representations and an application: the 2-modular
decomposition numbers of Co2’, Computational methods for representations of groups and algebras (Essen,
1997), Progress in Mathematics 173 (Birkhäuser, Basel, 1999) 309–321.

7. M. Neunhöffer, ‘cvec: a GAP-package implementing compressed vectors and matrices’, 2006,
http://www-groups.mcs.st-and.ac.uk/∼neunhoef/Computer/Software/GAP/cvec.html.

8. F. Noeske, ‘Morita-Äquivalenzen in der algorithmischen Darstellungstheorie’, PhD Thesis, RWTH Aachen,
2005.

9. R. A. Parker, ‘The computer calculation of modular characters (the meat-axe)’, Computational group
theory (Durham, 1982) (Academic Press, London, 1984) 267–274.

10. M. Ringe, ‘The MeatAxe – computing with modular representations’, 2009,
http://www.math.rwth-aachen.de/homes/MTX/.

11. A. J. E. Ryba, ‘Condensation of symmetrized tensor powers’, J. Symbolic Comput. 32 (2001) 273–289.
12. J. G. Thackray, ‘Modular representations of some finite groups’, PhD Thesis, University of Cambridge,

1981.
13. R. Wilson, J. Thackray, R. Parker, F. Noeske, J. Müller, K. Lux, F. Lübeck, C. Jansen, G. Hiss

and T. Breuer, ‘The modular Atlas project’, 1998, http://www.math.rwth-aachen.de/∼MOC/.

http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www.math.rwth-aachen.de/~DC/
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/homes/MTX/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/
http://www.math.rwth-aachen.de/~MOC/

CONDENSATION OF HOMOMORPHISM SPACES 157

Klaus Lux
Department of Mathematics
The University of Arizona
Tucson, AZ 85721-0089
USA

klux@math.arizona.edu

Max Neunhöffer
School of Mathematics and Statistics
Mathematical Institute
University of St Andrews
North Haugh, St Andrews
Fife KY16 9SS
United Kingdom

neunhoef@mcs.st-and.ac.uk

Felix Noeske
Lehrstuhl D für Mathematik
RWTH Aachen University
52056 Aachen
Germany

felix.noeske@math.rwth-aachen.de

mailto:klux@math.arizona.edu
mailto:neunhoef@mcs.st-and.ac.uk
mailto:felix.noeske@math.rwth-aachen.de

	1. Introduction
	2. Notation
	3. The theory
	4. The practice
	5. Precondensation
	6. Condensation
	7. Performance
	References

