
CONDENSATION OF HOMOMORPHISM SPACES

KLAUS LUX, MAX NEUNHÖFFER, AND FELIX NOESKE

Abstract. We present an efficient algorithm for the condensation of homo-

morphism spaces. This provides an improvement of the known tensor conden-

sation method which is essentially due to a better choice of bases. We explain
the theory behind this approach and describe the implementation in detail.

Finally, we provide timings to compare with previous methods.

1. Introduction

Computational methods have been particularly successful in the modular repre-
sentation theory of sporadic groups. From the days when R. Parker and J. Thack-
ray devised the MeatAxe [Tha81, Par84], to recent progress in the modular Atlas
project [WTP+98], the majority of results may be attributed to the application of
computers. Diverting complex calculations to a machine, while expediting the an-
swer and simultaneously precluding man-made miscalculations, does not mean that
a push-of-a-button strategy is always met with success. In fact most open problems
in the modular Atlas project have always resisted a direct computational approach
when they were firstly considered. To regain computational tractability, J. Thack-
ray introduced a method called fixed-point reduction in his PhD thesis [Tha81],
which allowed him to study large modules by only considering certain subspaces.
This method is a special case of what has become known as “condensation”.

The precise connection is as follows: Let F be a field of characteristic p greater
than zero, G a finite group, FG the group algebra, and V a finite dimensional
FG-module. Furthermore let e ∈ FG be an idempotent. Then we consider the
condensation functor − · e : mod-FG → mod-eFGe, under which V is mapped to
V e and a homomorphism ϕ ∈ HomFG(V,W) is mapped to its restriction ϕ|V e ∈
HomeFGe(V e,We). We refer to V e as the condensed module of V and e as the
condensation idempotent. The condensation functor has a number of interesting
properties, details of which are given in [Gre80, Section 6] or [Ryb01], for example.

The wide array of different available condensation algorithms for group algebras
providing implementations which allow the condensation of, for example, permu-
tation modules [LN00], induced modules [MR99, Noe05] and tensor products of
modules [LW98, Noe05], is testimony of the method’s usefulness. In this note we
want to present an efficient algorithm for the condensation of homomorphism spaces
of FG-modules for some finite group G. As homomorphism spaces may be viewed
as tensor products and vice versa, the method we present also sheds some new light
on the condensation of tensor products of FG-modules.

We fix some further notation which will remain in effect throughout this note:
Let V and W be finite dimensional FG-modules. Then HomF (V,W) is also a finite

Key words and phrases. Computational representation theory, condensation.
Partially supported by the DFG grant HI 895/1-1.

1

2 KLAUS LUX, MAX NEUNHÖFFER, AND FELIX NOESKE

dimensional FG-module, where the action is defined as

(1) ϕg : v 7→ ϕ(vg−1)g, v ∈ V

for all ϕ ∈ HomF (V,W) and g ∈ G.
We choose a subgroup K ≤ G whose order is coprime to the characteristic of F .

Let Λ denote a one-dimensional FK-module affording the linear representation λ.
In the present work we condense with idempotents of the form

eλ :=
1

|K|
∑
k∈K

λ(k−1)k,

i.e. eλ is the central primitive idempotent corresponding to the simple module Λ in
the semi simple group algebra FK. Therefore we call K a condensation subgroup.

This paper is structured as follows: After introducing some notation in Section 2,
we begin in Section 3 by building the theoretical underpinning from which we
subsequently construct our algorithm in Sections 4 to 6. Section 5 details the one-
off calculations needed to prepare the input for the actual condensation process,
which we describe in the following Section 6. In particular in Section 5 we deal with
the independently interesting problem of how to quickly calculate a semi simplicity
basis for a module. The paper finishes with Section 7 in which we give some runtime
examples of our algorithm to illustrate its efficiency.

2. Notation

In general, to compose maps from right to left, we write α ◦ β to mean the map
which first applies β and then α. Let V and W be vector spaces over the same
field F . For given bases B of V and C of W and a linear map φ : V →W we write
MC
B(φ) for the matrix describing the action of φ with respect to the two bases. We

use row-convention, i.e. the rows of MC
B(φ) contain the coefficients of the action of

φ on the basis B with respect to the basis C. For an endomorphism without basis
change, i.e. B = C, we simply write MB(φ). Note that by this convention we have
MB(ϕ ◦φ) = MB(φ)MB(ϕ), and the matrix is acting by right multiplication on its
natural vector space.

Let now V and W be FG-modules for a finite group G. Interpreting the elements
of FG as the endomorphisms they induce on V and W , we also write MB(g) and
MC(g) for the matrices which describe the action of g on V , respectively on W .

For a subgroup K ≤ G, we denote the restricted modules by V↓K and W↓K .
If V↓K =

⊕s
i=1 Si and W↓K =

⊕t
j=1 Tj are direct sum decompositions, we often

choose bases B and C for V and W respectively by concatenating bases Bi of the Si
and bases Cj of the Tj . In this case we denote by M

Bj
Bi (g) the submatrix of MBB (g)

with rows corresponding to the basis vectors in Bi and columns corresponding to

the basis vectors in Bj . Formally, this is the matrix M
Bj
Bi (pVj ◦ g ◦ ιVi) of pVj ◦ g ◦ ιVi

with respect to the bases Bi and Bj , where ιVi : Si → V is the inclusion map and
pVj : V → Sj is the projection map given by the above direct sum decomposition.

Similarly, for a linear map ϕ : V → W we denote by M
Cj
Bi (ϕ) the submatrix of

MCB(ϕ) which is equal to the matrix M
Cj
Bi (p

W
j ◦ ϕ ◦ ιVi) of pWj ◦ ϕ ◦ ιVi , where

pWj : W → Tj is the projection map given by the above direct sum decomposition.

CONDENSATION OF HOMOMORPHISM SPACES 3

3. The Theory

To compute the action of eλgeλ on HomF (V,W)eλ we will have to apply g to
a basis of the condensed module and project the resulting images, which will in
general spread out through the entire space HomF (V,W), onto HomF (V,W)eλ by
an application of eλ.

Owing to the limited available computational resources, this approach gives
rise to two problems which are critical to any practical implementation. Firstly,
when applying g, a straightforward implementation working in the potentially
huge dimF (V) × dimF (W)-dimensional space would confine the applicability of
this method to only pocket-size examples. Secondly, when projecting with eλ, we
must equally avoid to construct the idempotent in the huge space.

The solution to both problems lies within the decomposition of HomF (V,W)
into an internal direct sum of suitable FK-submodules. We give this key idea in
the following straightforward theorem, which we state without its (obvious) proof.

Theorem 3.1. Let V↓K =
⊕s

i=1 Si and W↓K =
⊕t

j=1 Tj be decompositions into

simple FK-submodules Si and Tj with projection maps pVi : V → Si and pWj : W →
Tj and inclusion maps ιVi : Si → V and ιWj : Tj → W . This implies the following
decomposition

(2) HomF (V↓K ,W↓K) =

s⊕
i=1

t⊕
j=1

Hi,j

as an internal direct sum of FK-submodules, where Hi,j = ιWj ◦HomF (Si, Tj) ◦ pVi .

Note that Hi,j is an FK-submodule of HomF (V↓K ,W↓K) since pWj and ιVi are FK-
homomorphisms. Thus we have

(3) HomF (V↓K ,W↓K)eλ =

s⊕
i=1

t⊕
j=1

Hi,jeλ

as an internal direct sum of F -subspaces. Therefore, a basis of the whole space
HomF (V,W)eλ may be obtained by concatenating bases of the spaces Hi,jeλ for all
1 ≤ i ≤ s and 1 ≤ j ≤ t.

For the rest of the paper we will fix a sequence of simple FK-submodules
S1, . . . , Ss of V and simple FK-submodules T1, . . . , Tt of W such that V↓K =⊕s

i=1 Si and W↓K =
⊕t

j=1 Tj , together with the projection and inclusion maps.

By Theorem 3.1 condensation preserves the direct sum decomposition (2), hence
Lemma 4.2 solves the first problem of applying g without constructing its matrix
on the whole space HomF (V,W).

Therefore we are now left with the second problem, of finding an efficient way
to describe the linear map on HomF (V,W) induced by eλ. As we will see, this is
closely related to finding a “nice” basis for HomF (V,W), a problem we will deal
with next.

Following the strategy of Theorem 3.1 we intend to construct a basis for the
condensed space HomF (V,W)eλ by concatenating bases for the direct summands
of (3). Hence, we will take a closer look at condensing homomorphisms between
simple FK-modules. The starting point of what follows is Lemma 3.2, namely if we
condense any space of F -linear maps between two modules with a linear idempotent,

4 KLAUS LUX, MAX NEUNHÖFFER, AND FELIX NOESKE

we may identify the resulting space with a space of FK-homomorphisms. This will
be very useful in the following.

Lemma 3.2. Let V be an FK-module. Denote by V λ the FK-module with the
same underlying F -space structure and the (twisted) K-action given by v ∗ k :=
λ(k)vk. Then noting that HomF (V,W) = HomF (V λ,W) we obtain that the F -
linear map on HomF (V,W) induced by e1 and the F -linear map induced by eλ on
HomF (V,W)(= HomF (V λ,W)) are identical.

Proof. Let ϕ ∈ HomF (V λ,W) = HomF (V,W). We have

ϕe1(v) =
∑
k∈K

ϕ(v ∗ k−1)k =
∑
k∈K

λ(k−1)ϕ(vk−1)k = ϕeλ(v).

Hence e1 and eλ induce the same F -linear map on HomF (V,W). �

Remark 3.3. Considering V λ and e1 instead of V and eλ in Lemma 3.2 amounts
to a basis change of the algebra FK: the idempotent eλ is nothing but the trace
idempotent for the group {λ(k−1)k | k ∈ K ≤ FK ≤ FG} ∼= K also contained in
FK. Hence the transition from e1 to eλ is a basis change in FK from K to the
isomorphic group.

The consequences of Lemma 3.2 are far-reaching: when deriving a basis of
HomF (V,W)eλ that allows an efficient computational treatment, we can focus on
the case that λ is the trivial character of K, by replacing V by its twist V λ. For
the remainder of this section, we shall therefore assume without loss of generality
that Λ is the trivial K-module, and write e for the idempotent e1.

As a first consequence we may deduce with the help of Schur’s Lemma that
homomorphisms between simple FK-modules often condense to zero.

Corollary 3.4. Let S and T be simple FK-modules. Then we have

HomF (S, T)e =

{
0 if S �FK T,

α ◦ EndFK(S) if α is an FK-isomorphism in HomFK(S, T),

Note that E := EndFK(S) is a field and as such is isomorphic to the splitting field
of S and T .

Proof. This is an immediate consequence of Lemma 3.2, Schur’s Lemma and Wed-
derburn’s theorem on finite division rings. �

The idea now is to consider how to use the isomorphism of Corollary 3.4 to our
advantage. Therefore let us fix two isomorphic simple FK-summands S := Si ≤
V↓K and T := Tj ≤ W↓K , and let us keep the notation of Corollary 3.4. Thus
E denotes the splitting field of S and T . We set n := [E : F] to be the degree
of the extension and θ to be a primitive element of E over F . Furthermore set
d := dimF S. We now give am alternative description of the projection induced
by e on HomF (S, T). We will show that this description yields a computationally
more efficient method to compute the action of e on HomF (S, T).

Definition 3.5. Let α ∈ HomFK(S, T) be an isomorphism. We define a non-
degenerate symmetric bilinear form 〈·, ·〉 on HomF (S, T) by setting

〈ϕ,ψ〉 := trace
(
α−1 ◦ ϕ ◦ α−1 ◦ ψ

)
for any two ϕ,ψ ∈ HomF (S, T).

CONDENSATION OF HOMOMORPHISM SPACES 5

Lemma 3.6. We use the same notation as in Definition 3.5. The bilinear form
〈·, ·〉 is K-invariant, i.e.

〈ϕk, ψk〉 = 〈ϕ,ψ〉
for all ϕ,ψ ∈ HomF (S, T) and 〈ϕe, ψ〉 = 〈ϕ,ψ〉 if ψ ∈ HomFK(S, T).

Proof. Denoting the linear map induced by the action of k on S by kS and the
linear map induced by the action of k on T by kT , we have ϕk = kT ◦ϕ◦k−1S . Now,
as kT ◦ α = α ◦ kS , the equality

α−1 ◦ ϕk ◦ α−1 ◦ ψk = kS ◦ α−1 ◦ ϕ ◦ α−1 ◦ ψ ◦ k−1S
is immediate, and hence the first claim follows. The second statement follows
similarly by noting that k−1T ◦ ψ = ψ ◦ k−1S if ψ ∈ HomFK(S, T). �

Lemma 3.7. The complement of HomFK(S, T) in HomF (S, T) with respect to the
projection with e, i.e. the subspace HomF (S, T)(1− e), is given by HomFK(S, T)⊥,
the orthogonal complement with respect to the bilinear form of Definition 3.5. Hence
the linear map induced by e on HomF (S, T) is given by the orthogonal projection
of HomF (S, T) onto HomFK(S, T). Moreover, the restriction of the form 〈·, ·〉 to
HomFK(S, T) is also non-degenerate.

Proof. By Lemma 3.6 we have that HomF (S, T)(1−e) is contained in the orthogonal
complement of HomFK(S, T) in HomF (S, T). Now, since 〈·, ·〉 is non-degenerate,
we have dimF HomF (S, T) = dimF HomFK(S, T)+dimF HomFK(S, T)⊥. Therefore
we conclude that HomF (S, T)(1− e) is equal to HomFK(S, T)⊥ as claimed. �

The following lemma is relevant from a computational point of view.

Lemma 3.8. Let (b1, . . . , bn) be an F -basis of HomFK(S, T) and set

B :=
(
〈bi, bj〉

)
1≤i,j≤n,

i.e. B is the invertible (Gram) matrix of the restriction of the bilinear form to
HomFK(S, T) with respect to the basis (b1, . . . , bn). Furthermore, for an arbitrary
ϕ ∈ HomF (S, T) we define

κ(ϕ) := [〈ϕ, b1〉 , . . . , 〈ϕ, bn〉] ·B−1.

Then the map

π : ϕ 7→
n∑
k=1

κ(ϕ)kbk

gives the projection of HomF (S, T) onto HomFK(S, T) induced by e, i.e. we have
π(ϕ) = ϕe.

Proof. The claim can be checked by a straightforward computation. �

4. The Practise

The aim of this section is to provide the means to address the problems given
at the beginning of Section 3 computationally. To this end, we give details on the
steps necessary to realise the approach outlined theoretically in the previous section
for practical computations.

6 KLAUS LUX, MAX NEUNHÖFFER, AND FELIX NOESKE

Definition 4.1. For an FK-module V with a decomposition V = S1⊕S2⊕· · ·⊕Ss
into an internal direct sum of simple FK-modules as given above, we choose an F -
basis of V as the concatenation of bases Bi for the simple direct summands Si in
such a way that for isomorphic summands Si and Sj we have MBi(k) = MBj (k) for
all k ∈ K. Such a basis B is called FK-symmetry adapted (or symmetry adapted
if K is evident). If B is FK-symmetry adapted, and C is an FK-symmetry adapted
basis of an FK-module W (with regard to a decomposition W = T1⊕ T2⊕ · · · ⊕ Tt
into a direct sum of simple FK-submodules), then we call B and C synchronised or in
synchronicity, if MBi(k) = MCj (k) for all k ∈ K given that Si and Tj are isomorphic
FK-modules. Note that in the latter case the F -linear map α ∈ HomF (Si, Tj)
mapping Bi to Cj is actually an FK-isomorphism and we will use it for the definition
of the bilinear form 〈·, ·〉 defined on HomF (Si, Tj) = α ◦ EndF (Si).

The power of Theorem 3.1 may now be illustrated in the following lemma: ow-
ing to the direct sum decomposition (2), we may apply a group element g to any
homomorphism by dealing successively with linear maps between the simple sum-
mands of V↓K and W↓K , namely the spaces HomF (Si, Tj), which we consider to
be subspaces of HomF (V,W) via their canonical embeddings. In this way we gain
some independence from the dimensions of the FG-modules V and W .

Lemma 4.2. Let V and W be FG-modules with FK-symmetry adapted bases B
and C. Let S and S′, respectively T and T ′, be members of the internal direct sum
decompositions into simple FK-submodules of V↓K , respectively W↓K . Then for a
ϕ ∈ HomF (S, T) we have

MBS
BS′ (g

−1) ·MCT
BS (ϕ) ·MCT ′

CT (g) = M
CT ′
BS′ (ϕ · g).

Proof. This is elementary. For the notation see Section 2. �

Plugging together Lemma 4.2 and Lemma 3.8, we arrive at the following theorem,
with which we overcome our problems stated at the beginning of Section 3.

Theorem 4.3. Let S, S′, T and T ′ be simple FK-modules together with isomor-
phisms α ∈ HomFK(S, T) and α′ ∈ HomFK(S′, T ′). Assume furthermore that the
bases BS and CT , and BS′ and CT ′ , respectively, are synchronised, i.e. α(BS) = CT
and α′(BS′) = CT ′ . Take E to be the splitting field of S (and T) with primitive
element θ and n := [E : F]. Similarly, let E′ denote the splitting field of S′ (and
T ′) whose primitive element is θ′ with n′ := [E′ : F].

Then {α ◦ θk | k = 1, . . . , n} is an F -basis of HomFK(S, T), the set {α′ ◦ θl |
l = 1, . . . , n′} is an F -basis of HomFK(S′, T ′), and the image of the basis element
α ◦ θk under ege for some g ∈ G has the coefficient vector

v := [
〈
(α ◦ θk) · g, α′ ◦ θ′0

〉
, . . . ,

〈
(α ◦ θk) · g, α′ ◦ θ′n

′−1
〉

] ·B′−1

with respect to the basis (α′ ◦ θ′l | 0 ≤ l ≤ n′ − 1), where

B′ =
(〈
α′ ◦ θ′i−1, α′ ◦ θ′j−1

〉)
1≤i,j≤n′ =

(
trace(θ′i−1θ′j−1)

)
1≤i,j≤n′ .

Thus setting

M := MBS
BS′ (g

−1) ·MCT
BS (α ◦ θk) ·MCT ′

CT (g) =: M = (mi,j) ∈ Fn
′×n′

,

we obtain

v = [trace
(
M ·MCT ′

BS′ (α
′ ◦ θ′0)

)
, . . . , trace

(
M ·MCT ′

BS′ (α
′ ◦ θ′n

′−1)
)
] ·B′−1.

CONDENSATION OF HOMOMORPHISM SPACES 7

Proof. By Lemma 3.2 the idempotent e fixes every element of E; in particular it
fixes a basis vector α◦θk for any k ∈ {0, . . . , n−1}. Therefore we have α◦θk ·ege =
α ◦ θk · ge. By Lemma 4.2 the action of g on α ◦ θk is given by the matrix M with
respect to the chosen bases. Now, by Lemma 3.2 the multiplication of (α ◦ θk)g by
e is realized by the orthogonal projection of (α ◦ θk)g onto HomFK(S′, T ′), i.e. by
applying Lemma 3.8. Also note that〈

α′ ◦ θ′k, α′ ◦ θ′l
〉

= trace(α′−1 ◦ (α′ ◦ θ′k) ◦ α′−1 ◦ (α′ ◦ θ′l)) = trace(θ′kθ′l).

�

Remark 4.4. In the above formulae we have

MCT
BS (α ◦ θk) = MBS

BS (θk) and M
CT ′
BS′ (α

′ ◦ θ′k) = M
BS′
BS′ (θ

k)·

Theorem 4.3 illustrates that a large portion of the computational effort to calcu-
late representing matrices for elements of the condensed group algebra is devoted
to matrix multiplications involving the primitive elements of the splitting fields. It
is therefore desirable to choose special bases for the involved vector spaces in such
a manner that the primitive elements are represented by matrices which are more
amenable to a practical implementation.

Definition 4.5. For an F -basis BS of S take {b1, . . . , bd/n} ⊆ BS to be a subset
which is an E-basis. Using these elements we define the sequence

θBS := (b1, b1θ, . . . , b1θ
n−1, b2, b2θ, . . . , b2θ

n−1, . . . , bd/n, bd/nθ, . . . , bd/nθ
n−1),

which is again an F -basis of S; we call it θ-adapted or, more generally, adapted to
the splitting field of S.

If B is a synchronised semi simplicity basis, then to preserve synchronicity when
concatenating the θ-adapted bases of Definition 4.5, we construct them in the fol-
lowing way.

Remark 4.6. Let S′ be a simple FK-module isomorphic to S. If BS and BS′ are
synchronised and {i1, . . . , id/n} ⊆ {1, . . . , d} are the indices of the chosen elements

of BS to obtain θBS as in Definition 4.5, then choosing the subsequence of elements
with the same indices in BS′ yields a θBS′ which is in synchronicity with θBS .

Proof. By the synchronicity of BS and BS′ every element of K acts the same way
on both bases. Also, θ commutes with every element of K. Hence θBS and θBS′

are synchronised. �

The bases as in Definition 4.5 facilitate an F -basis for HomF (S, T) with which
it is particularly easy to work.

Lemma 4.7. Let θBS and θCT be θ-adapted synchronised bases for S and T and
let α be the FK-isomorphism mapping θBT to θCS. Then

M
θCT
θBS (α ◦ θk) = M

θBS
θBS (θk) =


C(µθ)

k 0 · · · 0

0 C(µθ)
k . . .

...
...

. . .
. . . 0

0 · · · 0 C(µθ)
k



8 KLAUS LUX, MAX NEUNHÖFFER, AND FELIX NOESKE

where C(µθ) denotes the companion matrix

C(µθ) =



0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 0 1
a0 a1 · · · an−2 an−1

 ∈ F
n×n

of the minimal polynomial µθ = Xn −
∑n−1
i=0 aiX

i of θ.

Proof. By our chosen bases M
θBS
θBS maps the primitive element θ to the block-

diagonal matrix having C(µθ) along the diagonal and M
θCT
θBS (α) is the identity

matrix. �

Thus by choosing synchronised bases which are adapted to splitting fields, we
may assume a block-diagonal matrix as in Lemma 4.7 in the formula of Theorem
4.3, instead of an arbitrary representing matrix for α ◦ θ. This way we are able to
exploit the special form of a companion matrix, ultimately avoiding straightforward
but costly matrix multiplications wherever possible. The details of this approach
in our algorithm are given in Section 6.

5. Precondensation

The action of an element eλgeλ for some g ∈ G on HomF (V,W)eλ is the same
as the action of geλ on HomF (V,W)eλ. Hence, as we may identify HomF (V,W)eλ
by means of Lemma 3.2 with HomF (V λ,W)e1, we may equivalently consider the
action of g on the special basis of HomF (V λ,W)e1 constructed in Section 3. This
also allows us to project the images of these basis vectors under g back onto the
fixed space HomF (V λ,W)e1 without explicitly applying an idempotent.

Therefore, for the computation of a representation of eλgeλ on the module
HomF (V,W)eλ, a non-trivial FK-module Λ is only relevant at the very beginning
of the computation: as the special basis of the condensed homomorphism space
only relies on the action of K on HomF (V,W), replacing V↓K by V λ↓K and eλ by
e := e1 lets us determine the action of ege on HomF (V,W)e.

To this end, we readily identify two basic steps from Section 3 which form the
framework of an algorithmic implementation:

Step 1: Determine the composition factors {S1, . . . , Ss} and {T1, . . . , Tt} of V↓K and
W↓K respectively, along with their splitting fields. Compute the mutually
synchronised K-semi simplicity bases for both V and W , which are adapted
to the splitting fields of the composition factors, and determine the matrix
B as in Lemma 3.8.

Step 2: For all pairs of composition factors (S, T) from Step 1 for which S ∼=FK T
compute the corresponding part of the result matrix by Theorem 4.3.

Obviously, while Step 2 needs to be repeated every time, the output of Step 1
only has to be computed once, if we wish to compute representing matrices for
several different algebra elements eg1e, . . . , egke ∈ eFGe. As in Step 2 the actual
output matrix is produced, we call this step the Condensation Step. The one-off
preparatory calculations of Step 1 are summed up under the name Precondensation.

CONDENSATION OF HOMOMORPHISM SPACES 9

Our theoretical development in Section 3 already illustrates that a practical
implementation of Theorem 4.3 relies most importantly on the underlying bases
of the subspaces V and W . As we will show, the chosen approach – applying
synchronised and adapted bases – does not only allow for a nice description of the
algorithm, but also forms the backbone of our efficiency considerations.

Of course, the task of computing the composition factors of V↓K and W↓K , as
well as their splitting fields, is fulfilled by a run of the MeatAxe [Tha81, Par84].
But as a key element of precondensation is the calculation of the synchronised semi
simplicity bases, the output of current MeatAxe implementations is insufficient
for our purposes. For this task we employ our own GAP implementation of the
MeatAxe, which will be published separately in the form of the forthcoming GAP
package chop. It features an augmented decomposition algorithm Chop whose added
functionality lets us compute the necessary bases easily.

Definition 5.1. Let V be a finite dimensional module for some finite dimensional
F -algebra A, and 0 = V0 � V1 � · · · � Vl = V a composition series of V . Then
an F -basis B of V is called adapted to the composition series if the matrix repre-
sentation of every a ∈ A on V with respect to B is a block lower triangular matrix
whose diagonal block Bi gives the matrix representation of a on the composition
factor Vi/Vi−1 for all i = 1, . . . , l.

Upon the user’s request the chop package’s main program Chop computes a basis
adapted to the composition series found.

In the special case of determining a composition series of a semi simple module,
the adapted basis is the foundation on which we build a semi simplicity basis.
The basic idea is as follows: Since we have an explicit basis of the semi simple
module, it is easy to define an F -projection π onto a quotient by a submodule
of the composition series. We transform π into an FK-module endomorphism by
applying the trace map Tr : HomF (V,W)→ HomFK(V,W), i.e. by defining

Tr(π)(v) :=
1

|K|
∑
k∈K

π(vk−1)k = πe.

Successively applying these endomorphisms to the composition series adapted basis
will then yield a semi simplicity basis.

Lemma 5.2. Let B be a basis of V↓K which is adapted to a composition series,
and let S be a submodule in this composition series and call the associated quotient
Q. Then we may partition B = BS t BQ into a submodule and quotient part. By
definition of B we have

MB(a) =

[
MBS (a) 0
∗ MBQ(a)

]
for every a ∈ FK. Let π ∈ EndF (V) be the projection onto S in the vector space
decomposition V = 〈BS〉 ⊕ 〈BQ〉 induced by the partition of B. Setting B′Q :=

(id− Tr(π))(BQ) then gives a basis BS t B′Q of V↓K which yields

MBStB′
Q

(a) =

[
MBS (a) 0

0 MBQ(a)

]
for every a ∈ FK. Note that the matrix representation on the quotient is preserved.

10 KLAUS LUX, MAX NEUNHÖFFER, AND FELIX NOESKE

Proof. Since id − π is the projection onto a vector space complement of S, the
FK-homomorphism id−Tr(π) projects onto a K-invariant complement of S. The
matrix representation on the quotient is maintained because for all v ∈ BQ and
k ∈ K the equation (id− Tr(π))(v)k = vk − Tr(π)(vk) = (id− Tr(π))(vk − π(vk))
holds. �

To quickly compute a semi simplicity basis from a basis which is adapted to a
composition series, we exploit the inherently recursive nature of this problem: Once
we obtain the direct sum of a submodule and a quotient by applying Lemma 5.2,
we may restrict all further computations to either the submodule or the quotient.
A subsequent iteration of this procedure benefits greatly from the decreasing sizes
of the matrices involved. In order to maximise this speed-up, we aim to split the
currently considered module into a submodule and a quotient of approximately the
same size.

Algorithm 1 SemiSimplicityBasis

Input: semi simple module V with basis B adapted to a composition series C.
Output: B is a semi simplicity basis for V .

Choose S ≤ V in C such that dimF S is close to 1
2 dimF V .

Extend a basis BS for S to a basis of B = BS t BQ of V (see Lemma 5.2), thus
defining an F -projection π : V � S.
Compute Tr(π) with respect to the basis B.
BQ ← (id− Tr(π))(BQ). {Lemma 5.2}
if S is reducible then
BS ← SemiSimplicityBasis(S, BS).

end if
if Q is reducible then
BQ ← SemiSimplicityBasis(Q, BQ).

end if

Lemma 5.3. Let K ′ ≤ K be a subgroup and denote by K ′\K a right transversal of
K ′ in K. Let V be some FK-module with basis B, and choose some v ∈ V . Then
we have

MB(Tr(π)) =
1

|K|
∑

k∈K′\K

MB(k−1)

(∑
k′∈K′

MB(k′−1)MB(π)MB(k′)

)
MB(k).

Proof. As we may write every element x ∈ K uniquely as x = k′k for a k′ ∈ K ′
and a k ∈ K ′\K, and MB(k′k) = MB(k′)MB(k) the claim follows. �

To use Lemma 5.3 to its full extent, we have to apply it several times: After
choosing a subgroup chain {1} = K0 � K1 � · · · � Kl = K for K, we may
iterate Lemma 5.3, and therefore only need to compute the transversal elements in
Ki−1\Ki for i = 1, . . . , l. Thus instead of computing Tr(π) and needing 2|K| matrix

multiplications, we now only need 2
∑l
i=1[Ki : Ki−1]. For example, choosing K to

be an `-group for some prime ` different from p with |K| = `m, then there exists
a composition series of K of length m whose composition factors are all cyclic of
order `. Thus Lemma 5.3 allows us to compute the projection with only 2m` matrix
multiplications in contrast to 2`m a straightforward implementation would take.

CONDENSATION OF HOMOMORPHISM SPACES 11

Having solved the problem of how to quickly calculate semi simplicity bases, we
now turn to the second open problem: Synchronising bases, and adapting the basis
of a composition factor to a primitive element of its splitting field (see Definition
4.5). The nature of both tasks allows a simultaneous treatment.

To compare two simple modules, i.e. to test whether they are isomorphic or
not, the MeatAxe uses Parker’s standard basis technique (confer [Par84]). Of
course, in compliance with Definition 4.1, standard bases may be used to achieve
synchronicity, because with respect to a standard basis every isomorphic composi-
tion factor affords the same matrix representation. However in general, a standard
basis of a composition factor does not need to be adapted to a primitive element
of its splitting field. Therefore we have to do a little more work here.

During the computation of the module’s composition factors, for every isomor-
phism type of an FK-module S which occurs in the composition series the degree
of its splitting field is determined. This is done by the method Holt and Rees
introduce in [HR94, Section 3], which computes a primitive element.

In order to produce θ-adapted synchronised bases for two isomorphic modules, we
transform both to standard basis first. Then by Remark 4.6, the above procedure
yields the result wanted. In particular, the basis change required needs only to be
calculated once, and can then be applied to any isomorphic module in standard
basis.

Therefore we may incorporate the computation of a module’s synchronised basis
which is adapted to the primitive elements of the splitting fields of its composition
factors into the precondensation algorithm as follows:

While chopping a module into its composition factors, the MeatAxe compares
every composition factor found with every element in the database of isomorphism
types of composition factors already found. In particular it determines its degree of
splitting field. If the composition factor is isomorphic to an already known one in
the database, it is transformed into the corresponding standard basis. Therefore, in
the light of Theorem 4.3, to ensure that the bases for both restricted modules V↓K
and W↓K are mutually synchronised, i.e. any two isomorphic composition factors
afford the same matrix representation, irrespective of the fact in which module they
occur, we allow as additional input into the MeatAxe – the program Chop, to be
precise – a database of simple modules in standard basis. Then an execution of
Chop will automatically produce bases which are synchronised properly.

In the precondensation step we now only need to adapt the basis of every module
in the database to its splitting field by employing the method of Holt and Rees. The
resulting basis change matrix is then applied to all subbases of the whole module’s
basis which correspond to composition factors isomorphic to the database module.

Note that if the field F is a splitting field for a composition factor, then we do
not need to compute a basis which is adapted to this splitting field, of course; a
standard basis is sufficient in this case. Also note that the modules in the database
will always be (only) in standard basis form.

Summing up, the preparatory computations constituting the necessary calcula-
tions which provide the bases for Theorem 4.3 to be applied are:

(1) If Λ is non-trivial then replace V by V λ and eλ by e := e1.
(2) Determine the composition factors of V↓K and compute a basis of V↓K

which is adapted to the composition series found.

12 KLAUS LUX, MAX NEUNHÖFFER, AND FELIX NOESKE

(3) Using the database produced in the previous step, find the composition
factors of W↓K .

(4) As in [HR94], find primitive elements for the splitting fields of the compo-
sition factors, i.e. their endomorphism rings, and adapt their bases to these
elements.

(5) Convert the adapted bases of both V↓K and W↓K to semi simplicity using
Lemmas 5.2 and 5.3.

The final ingredient needed for the application of Theorem 4.3 in the conden-
sation step is the knowledge of the Gram matrix B of Lemma 3.8 for every pair
(S, T) of composition factors for which S ∼= T .

In other words, given the primitive element θ of E := EndFK(S), where E
is an extension of the ground field F of degree n, we need to determine B =
(
〈
α ◦ θi−1, α ◦ θj−1

〉
)1≤i,j≤n. As we choose θ-adapted synchronised bases for S and

T , Definition 3.5 gives〈
α ◦ θi, α ◦ θj

〉
= trace

(
M

θBS
θBS (θi+j)

)
=
d

n
trace

(
C(µθ)

i+j
)

using Lemma 4.7, where C(µθ) is again the companion matrix of the minimal
polynomial of θ. Note that d/n 6= 0 in F as S is an absolutely irreducible d/n-
dimensional EK-module. Therefore this information is easily determined after cal-
culating a primitive element as outlined above, if we store its minimal polynomial.
The inverse of B is recorded as part of its corresponding module in the database.

6. Condensation

After completing the necessary precondensation calculations, we may start the
actual condensation of a group element g ∈ G. As we have already seen in Section 1,
the group G acts on HomF (V,W) by taking a linear map ϕ to the homomorphism
mapping any v ∈ V to ϕ(vg−1)g. Therefore the input to our condensation algorithm
consists of two matrices respectively giving the action of g−1 on V and g on W .
Each is, of course, written with respect to synchronised semi simplicity bases B and
C which are adapted to the splitting fields of the composition factors. From this we
calculate a matrix for the action of the condensed element ege on the condensed
homomorphism space HomF (V,W)e. The output matrix is constructed by multiple
applications of Theorem 4.3. With each call the matrix product calculated involves
submatrices of both MB(g−1) and MC(g).

Thus, as we are mostly dealing with submatrices of larger matrices, the in-
troduction of the following notation is convenient: Let A ∈ Fm×n be a matrix,
r ∈ {1, . . . ,m}, and s ∈ {1, . . . , n}. For two strictly increasing sequences of integers

1 ≤ i1 < i2 < · · · < ir ≤ m and 1 ≤ j1 < j2 < · · · < js ≤ n we set A
[j1,...,js]
[i1,...,ir]

to be the (r × s)-submatrix (aik,jl)1≤k≤r,1≤l≤s of A. If [i1, . . . , ir] = [1, . . . ,m] or
[j1, . . . , js] = [1, . . . , n] then we omit the respective range.

Considering the projection onto HomF (V,W)e of Lemma 3.8, we see that the
result computed in Theorem 4.3 does not require knowledge of all entries of the
matrix product M . Since in particular, with respect to the specially constructed
bases, the matrix giving the primitive element is of the simple block diagonal form
of Lemma 4.7, we only need the very same diagonal blocks of M . Therefore we
can reformulate Theorem 4.3 in a more implementation friendly version, ultimately

CONDENSATION OF HOMOMORPHISM SPACES 13

avoiding unnecessary calculations. Note that for the complexity analysis in the
proof we rely on some lemmas presented after the theorem.

Theorem 6.1. We use the notation of Theorem 4.3. For brevity we define L :=

M
θBS
θ′BS′

(g−1) and R := M
θ′CT ′
θCT (g). Also let us denote the companion matrix of

µθ by C(µθ). Then the coefficient vector vB′ of Theorem 4.3 can be calculated by
evaluating the n′ × n′-matrix

N :=

d′/n′∑
i=1

d/n∑
j=1

L
[(j−1)n+1,...,jn]
[(i−1)n′+1,...,in′] · C(µθ)

k ·R[(i−1)n′+1,...,in′]
[(j−1)n+1,...,jn] ,

and computing trace(N · C(µθ′)
l−1) for l = 1, 2, . . . , n′. The resulting vector vB′

then has to be multiplied from the right by B′−1 to get v.
Evaluating all this for k = 0, 1, . . . , n− 1 needs altogether at most

2dd′(n+ n′ − 1) + n′(2n′2 + n′ − 2)

elementary operations in the field F . Here we count both multiplications and addi-
tions as elementary field operations.

Proof. By the θ-adaptedness of our bases we can cut L into n′ × n blocks and R
into n× n′ blocks as is illustrated in Figure 1 (there d/n = 4 and d′/n′ = 3).

n′

n′

n n

0

0

R

n′

n′

n′

0

0

n n

n′

L

n n nn n′ n′ n′ n′ n′ n′

=

=

·

·

·

C ′lC ′l

C ′l

C ′l

Ck
Ck

Ck
Ck

trace
∑

trace

∗

∗∗

∗

∗

∗ ∗

∗

∗∗

∗

∗

M(θk)

Figure 1. Illustration for the proof of Theorem 6.1

The first idea to avoid unnecessary computations is that to evaluate the traces of

the big d′×d′-matrices L ·MBT
BS (α ◦ θk) ·R ·MBT ′

BS′ (α ◦ θ′l), we only have to compute

the grey diagonal n′ × n′-blocks of L ·MBS
BS (θk) ·R, due to the nice block-diagonal

structure of M
BS′
BS′ (θ

′l) and Remark 4.4. Note that the blocks marked with a star

in Figure 1 are not necessarily equal to 0 but are not necessary to compute!
The second idea is to use the sparseness of the occurring companion matrices

together with caching of intermediate results.

14 KLAUS LUX, MAX NEUNHÖFFER, AND FELIX NOESKE

Let kA := L ·MBS
BS (θk) ·R. To compute the i-th grey block kA

[(i−1)n′+1,...,in′]
[(i−1)n′+1,...,in′] of

kA, we have to add the products

L
[(j−1)n+1,...,jn]
[(i−1)n′+1,...,in′] · C(µθ)

k ·R[(i−1)n′+1,...,in′]
[(j−1)n+1,...,jn]

for j = 1, . . . , n. Because we need these products for all k = 0, . . . , n − 1, we

can compute the products L
[(j−1)n+1,...,jn]
[(i−1)n′+1,...,in′] ·C(µθ)

k inductively by just multiplying

some previously known matrix by a companion matrix from the right. From the
complexity results in Lemma 6.5 it follows that we need at most d

n (n − 1) · 2n′n
elementary field operations to compute all products L

[(j−1)n+1,...,jn]
[(i−1)n′+1,...,in′] · C(µθ)

k for

fixed i and all j and k. Given those products, evaluating the i-th grey block
kA

[(i−1)n′+1,...,in′]
[(i−1)n′+1,...,in′] of kA for all k needs at most d

n · n
′2(2n − 1) elementary field

operations for the matrix multiplications with the R-parts, and another d
n additions

of n′ × n′ matrices to the final result needing d
n · n

′2 elementary field operations.
All these numbers of elementary field operations have to be multiplied by d′/n′

as we have to compute all grey n′ × n′ blocks of all kA. However, due to the fact

that all n′ × n′ diagonal blocks of M
BS′
BS′ (θ

′l) are equal, we do not have to process

these blocks separately but we only have to compute their sum. This is illustrated
in the second row of Figure 1.

Summing up these numbers results in

d′

n′

(
d

n
(n− 1) · 2n′n+

d

n
· n′2(2n− 1) +

d

n
· n′2

)
= 2dd′ · (n+ n− 1′),

which is the first summand of the number of operations in the theorem.
It remains to evaluate the traces of N · C(µθ′)

l for l = 0, . . . , n′ − 1. Here
we can use the same trick as above and compute these products by inductively
multiplying previously computed matrices by the companion matrix C(µθ′) from
the right. Thus, to compute all these matrices needs at most (n′−1)·2n′2 elementary
field operations, again by Lemma 6.5. To evaluate the traces then needs another
n′ · (n′ − 1) additions.

Since these traces form the vector vB′ from Theorem 4.3 we still have to multiply
this vector from the right by the stored n′ × n′-matrix B′−1, which needs another
n′(2n′ − 1) elementary field operations.

Summing up these numbers results in

(n′ − 1) · 2n′2 + n′ · (n′ − 1) + n′(2n′ − 1) = n′(2n′2 + n′ − 2)

elementary field operations, which is the second summand in the number in the
theorem.

Note that in an actual implementation some optimisation is done if zeroes are
encountered and thus our numbers are upper bounds. �

Under certain circumstances Theorem 6.1 allows a further simplification.

Corollary 6.2. In the case that F is a splitting field for S and T as well as for S′

and T ′, the corresponding coefficient vector of Theorem 4.3 is in fact only a scalar
and is given by

1

d′

d′∑
i=1

L[i] ·R[i],

CONDENSATION OF HOMOMORPHISM SPACES 15

i.e. it is obtained by adding the standard scalar products of the vectors L[i] and R[i]

for all i. In this case it only takes 2dd′ + 1 elementary field operations to compute
the result.

Proof. We observe that if n = 1, then we have C(µθ) = 1 in Theorem 6.1, and
therefore we may omit this matrix from the product. If n′ is also equal to 1, then
we only have to compute the diagonal of L · R in Theorem 6.1 and sum up all
entries. The theorem directly specialises to the claim. Note that the additional 1
in the expression 2dd′ + 1 of field operations is due to the division by d′. �

It is now easy to formulate the condensation algorithm. However, to prepare for
this endeavour we need to release a barrage of notation: As we have detailed in
Section 3, a basis for the condensed space HomF (V,W)e may be obtained by em-
bedding and concatenating bases for the FK-homomorphism spaces HomFK(S, T)
whenever S ∼= T for composition factors S and T . Thus, let {S1, . . . , Sr} and
{T1, . . . , Tr} respectively denote a complete set of isomorphism types of compo-
sition factors occurring simultaneously in V↓K and W↓K such that Si ∼= Ti for
i = 1, . . . , r. Let si be the multiplicity of Si in V↓K and analogously let ti be the
multiplicity of Ti in W↓K . Denote the different direct sums of isomorphism type

Si occurring in V↓K by S
(1)
i , . . . , S

(si)
i and those of isomorphism type Ti occurring

in W↓K by T
(1)
i , . . . , T

(ti)
i . Furthermore, we use the notation of Theorems 4.3 and

6.1; in other words, di gives the dimension of Si and Ti, and ni gives the degree of
the corresponding splitting field. Let θi denote a primitive element of this splitting
field, considered as an element of EndFK(Si).

Theorem 6.3. Using the notation from above, we obtain:
Algorithm 2 computes the representing matrix of ege on HomF (V,W)e with re-

spect to a basis adapted to the decomposition in equation 3.
Its execution needs at most

r∑
l=1

r∑
l′=1

sl∑
s=1

sl′∑
s′=1

tl∑
t=1

tl′∑
t′=1

2dldl′(nl + nl′ − 1) + nl′(2nl′ + nl′ − 2)

elementary field operations.

Proof. This is all evident by Theorem 6.1 and putting everything together as de-
scribed in Theorem 3.1. �

Remark 6.4. The six nested loops in Algorithm 2 and the corresponding six nested
sums in the analysis in Theorem 6.3 render it particularly important to optimise
things happening within these loops. We reap such optimisations from our special
choice of bases allowing for easy projection using traces. The resulting improve-
ments in computational complexity over previous implementations explain well the
performance improvements exhibited in the following section.

In the splitting field case this can be seen especially easily: The dominant term
within the 6 sums is 2dd′. In previous implementations of tensor condensation, the
same 6 nested loops were employed as here, however, in the innermost loop two
matrix multiplications A ·B · C with A ∈ F d′×d, B ∈ F d×d, and C ∈ F d×d′ plus a
multiplication of the resulting d′ × d′-matrix with a vector of length d′ were done.
This amounts to

d′(2d− 1)d+ d′(2d− 1)d′ + 2d′ = d′((2d− 1)d+ (2d+ 1)d′ + 2)

16 KLAUS LUX, MAX NEUNHÖFFER, AND FELIX NOESKE

Algorithm 2 HomCond — Condensation Algorithm

Input: Matrices MB(g−1) and MC(g) for some g ∈ G with
synchronised, splitting field adapted semi simplicity bases B and C.

Output: The matrix m gives the action of ege on HomF (V,W)e.
m← 0 ∈ FD×D {D = dimF HomF (V,W)e}
for 1 ≤ l ≤ r do

for 1 ≤ l′ ≤ r do
for 1 ≤ s ≤ sl do

for 1 ≤ s′ ≤ sl′ do
for 1 ≤ t ≤ tl do

for 1 ≤ t′ ≤ tl′ do
Evaluate an expression N as in Theorem 6.1 for

L←M

θlB
S
(s)
l

θ′
l′B

S
(s′)
l′

(g−1) and R←M

θ′
l′ C

T
(t′)
l′

θlC
T

(t)
l

(g)

giving rise to the nl × nl′ matrix describing the action of ege on

HomFK(S
(s)
l , T

(t)
l) projected onto HomFK(S

(s′)
l′ , T

(t′)
l′) and

put the result in the correct place in m.
end for

end for
end for

end for
end for

end for

elementary field operations, which is one order higher in the dimension of the K-
composition factors.

We conclude this section with a lemma about numbers of elementary field oper-
ations for basic vector and matrix arithmetic:

Lemma 6.5 (Complexity of basic matrix arithmetic). Let F be a field, and M ∈
F a×b and N ∈ F b×c matrices over F . Furthermore, let v ∈ F 1×b be a row vector.
In all the following statements we count additions as well as multiplications of
elements of F as “elementary field operations”.

Then the matrix product M · N can be computed using at most a · (2b − 1) · c
elementary field operations. The product v · N of the vector v with the matrix N
can be computed using at most (2b− 1) · c elementary field operations.

For a = c, the trace(MN) of the product MN can be computed using at most
2ab− 1 elementary field operations.

If b = c and N is a companion matrix, the product M ·N can be computed using
at most 2ab elementary field operations, and the product v · N using at most 2b
elementary field operations.

Proof. The product v ·N can be computed by multiplying row i of N with the i-th
entry of v for i = 1, 2, . . . , b and summing up all results. The scalar multiplications
need bc elementary field operations and then we have to do b−1 additions of vectors
of length c, resulting in a total of (2b− 1) · c operations.

CONDENSATION OF HOMOMORPHISM SPACES 17

To compute the matrix product M ·N we have to multiply each row of M from
the right by N . Thus this can be done in a · (2b− 1) · c elementary field operations
by the results in the previous paragraph.

If a = c, then evaluating trace(MN) amounts to forming all scalar products of
the i-th row of M with the i-th column of N and adding up all scalars. Since such
a scalar product costs 2b − 1 elementary field operations and summing up needs
another a−1 additions, the total number of operations needed is a(2b−1)+a−1 =
2ab− 1.

Let now b = c and N be a companion matrix. Then a multiplication of a
vector v by N amounts to shifting the vector v one entry to the right, multiplying
the rightmost entry of v by the last row of N and adding both resulting vectors.
Neglecting the shift this needs 2b elementary field operations. The multiplication
of M by N thus can be done using at most 2ab elementary field operations. �

Remark 6.6. In the preceding lemma we always give upper bounds, since in practical
applications the number of necessary operations can be reduced by using zeroes that
occur in the matrices.

7. Performance

In this section we present empirical evidence for the performance of our new
algorithm.

For two FG-modules V and W the space of homomorphisms HomF (V,W),
viewed as an FG-module by the action from Formula (1), is isomorphic to the
tensor product V ∗ ⊗W , where V ∗ denotes the contragredient module of V . Thus
we can compare the result of the condensation of HomF (V,W) with the one of
V ∗ ⊗F W and show the difference in performance between our algorithm and the
tensor condensation algorithm in the C-MeatAxe.

In Figure 2 we present timings, which were all done on a machine with Pentium
Core2 Quad Q6600 processor running at 2.4 GHz. The first column marked G
shows the isomorphism type of G, the second column marked q shows the number
of elements of the base field F , the third and fourth columns contain the dimen-
sions of the two modules. The product of those dimensions is the dimension of both
HomF (V,W) and V ∗⊗F W . The next two columns show the order |K| of the con-
densation subgroup and the dimension of the condensed module respectively. The
columns marked HC and TC contain runtimes in seconds for the condensation of
one element using HomCond (HC) and for the condensation of one element using
tcond (TC). Finally, the last column marked Mem contains the main memory re-
quirement for a GAP session performing only the HomCond condensation without
the precomputations. Note that an empty GAP session alone needs already about
100 MB just to load the library and the packages on a 64-bit machine.

For the group Fi22 we used as condensation subgroup a Sylow 3-subgroup of
the 12th maximal subgroup, which is isomorphic to the symmetric group S10. For
HN, we used the extraspecial normal subgroup of order 21+8 in the 4th maximal
subgroup, which is of isomorphism type 21+8.(A5 × A5).2. For Fi23 we used the
extraspecial normal subgroup of order 31+8 in the 7th maximal subgroup, which is
of isomorphism type 31+8.21+6.31+2.2S4. For Ly we used a non-normal subgroup
of order 3125 in the 5th maximal subgroup 51+4 : 4S6.

18 KLAUS LUX, MAX NEUNHÖFFER, AND FELIX NOESKE

G q dimV dimW |K| CDim HC TC Mem

Fi22 7 429 78 81 436 0.40 0.54 105
HN 5 626 626 512 1 096 0.208 9.98 116
HN 5 8 152 626 512 11 096 308 2 145 599
Fi23 2 1 494 1 494 19 683 684 10.4 26.0 175
Fi23 2 19 940 19 940 19 683 25 542 61 200 227 591 6911
Ly 3 651 651 3125 185 2.357 5.33 104

Figure 2. Performance of HomCond and tcond (times in seconds)

The modules for the group Fi23 in characteristic 2 have non-absolutely irreducible
constituents when restricted to the condensation subgroup, whereas all the other
examples demonstrate the splitting field case.

One should not expect this comparison to entirely exhibit the improved com-
plexity of our algorithm as mentioned in Remark 6.4. Due to the highly optimised
code on both sides, the actual performance measured does not always follow the
predictions of the complexity analysis, simply because in real-world examples the
break-even point where complexity arguments come into effect is not reached. Also,
both implementations are substantially distinct: The C-MeatAxe is implemented
completely in the C programming language, whereas our programs are implemented
in the GAP language, and only the low level finite field arithmetic is implemented in
C. Also, the implementations of the finite field arithmetic are quite different: The
C-MeatAxe uses table lookup; the arithmetic in the cvec package (see [Neu06]) we
are using in our programs uses machine word operations and no tables. Further-
more, in fine details like cache-awareness already the nature of how the C-MeatAxe
and GAP organise their memory accesses leads to a significant variance.

Note that we do not show the precomputation times, as the methods to obtain a
K-semisimple basis are incomparable: Whereas the C-MeatAxe uses peak words
(see [LMR94]) throughout, our implementation uses the techniques described in
Algorithm 1. Both techniques can behave completely differently in different sit-
uations: The major part of the precomputation in our algorithm is computing a
composition series and semi simplicity bases of the modules V and W restricted
to the condensation subgroup. In particular for the bigger modules like the one
for Fi23 with dimension 19940 or the one for HN with dimension 8152 this takes
a substantial amount of time. In the case of the C-MeatAxe, we found that in
some examples it’s peak word search does not finish in any reasonable amount of
time, forcing us to use ad hoc methods to come up with the input data for tcond.
The remaining precomputation to compute synchronised bases is basically negli-
gible for our programs, and also the corresponding precomputation computing P -
and Q-matrices in the tensor condensation programs of the C-MeatAxe are also
negligible.

Acknowledgements

We are indebted to Jon Thackray for many interesting discussions on the subject
of his own optimisations of the tensor condensation programs.

CONDENSATION OF HOMOMORPHISM SPACES 19

References

[Gre80] James A. Green. Polynomial representations of GLn, volume 830 of Lecture Notes in
Mathematics. Springer-Verlag, Berlin, 1980.

[HR94] Derek F. Holt and Sarah Rees. Testing modules for irreducibility. J. Austral. Math.

Soc. Ser. A, 57(1):1–16, 1994.
[LMR94] Klaus Lux, Jürgen Müller, and Michael Ringe. Peakword condensation and submodule

lattices: an application of the MEAT-AXE. J. Symbolic Comput., 17(6):529–544, 1994.

[LN00] Frank Lübeck and Max Neunhöffer. Direct condense 2, 2000.
http://www.math.rwth-aachen.de/~DC/.

[LW98] Klaus Lux and Markus Wiegelmann. Condensing tensor product modules. In The atlas
of finite groups: ten years on (Birmingham, 1995), volume 249 of London Math. Soc.

Lecture Note Ser., pages 174–190. Cambridge Univ. Press, Cambridge, 1998.

[MR99] Jürgen Müller and Jens Rosenboom. Condensation of induced representations and an
application: the 2-modular decomposition numbers of Co2. In Computational methods

for representations of groups and algebras (Essen, 1997), volume 173 of Progr. Math.,

pages 309–321. Birkhäuser, Basel, 1999.
[Neu06] Max Neunhöffer. cvec: A GAP-package implementing compressed vectors and matri-

ces, 2006. http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/GAP/cvec.html.

[Noe05] Felix Noeske. Morita-Äquivalenzen in der algorithmischen Darstellungstheorie. PhD
thesis, RWTH Aachen, 2005.

[Par84] R. A. Parker. The computer calculation of modular characters (the meat-axe). In

Computational group theory (Durham, 1982), pages 267–274. Academic Press, Lon-
don, 1984.

[Ryb01] A. J. E. Ryba. Condensation of symmetrized tensor powers. J. Symbolic Comput.,

32(3):273–289, 2001.
[Tha81] Jon G. Thackray. Modular Representations of Some Finite Groups. PhD thesis, Uni-

versity of Cambridge, 1981.
[WTP+98] Robert Wilson, Jon Thackray, Richard Parker, Felix Noeske, Jürgen Müller, Klaus

Lux, Frank Lübeck, Christoph Jansen, Gerhard Hiss, and Thomas Breuer. The mod-

ular Atlas project, 1998. http://www.math.rwth-aachen.de/~MOC/.

E-mail address: klux@math.arizona.edu

Department of Mathematics, The University of Arizona, Tucson, AZ 85721-0089 USA

E-mail address: neunhoef@mcs.st-and.ac.uk

School of Mathematics and Statistics, Mathematical Institute, University of St

Andrews, North Haugh, St Andrews, Fife, KY16 9SS, Scotland, United Kingdom

E-mail address: felix.noeske@math.rwth-aachen.de

Lehrstuhl D für Mathematik, RWTH Aachen University, 52056 Aachen, Germany

