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Changing mutable data structures Example: appending to a plain list

Imagine a plain list, first entry is the length:

L := 3 -1 -2 -3

How do you implement appending an element −4 at the end?
1 First increase the length, then store the new element:

L[0] := L[0] + 1
L[L[0]] := −4

2 First store the new element, then increase the length:
L[L[0] + 1] := −4
L[0] := L[0] + 1

Both look good — but do not work in a multi-threaded world!

L = 3 -1 -2 -3
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Changing mutable data structures Solutions

Thus: No order of events actually works.

Also: Another thread reading can see a corrupt list.

It is even worse:

It is not even clear that thread 2 sees the changes thread 1 has
made!
This is because of modern cache architectures.
Even statements like L[0] := L[0] + 1 might have problems!

Solutions:
Use read-only data as much as possible!
Organise exclusive access by program logic.
Use locking — be it explicit or implicit.

HPCGAP offers: regions, read-only objects, private data, the atomic
statement and atomic objects.
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Global data/state

In a single-threaded system a global variable for configuration or other
purposes might be a good idea.

In a multi-threaded system it isn’t.

Reasons:
All threads see the same value.
It could be changed in one thread whilst another is running.
Even read access will need some kind of locking.

Solution:
Avoid global variables or global state if at all possible.
Use additional arguments for configuration.
For global caching, use proper locking.

HPCGAP offers:
regions, shared objects, locking, thread local variables
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Race conditions

In a parallel program, the behaviour can depend on some more or less
random order, in which some events occur.

gap> while true do a := 1; a := 2 ; od;
!sh
--- Switching to thread 5
[5] gap> Collected(List([1..1000],i->a));
[5] [ [ 1, 319 ], [ 2, 681 ] ]

This one is rather obvious.
In general, these things can be very subtle.
Some problem might occur with very small probability.
Thus it is difficult to reproduce and difficult to fix.

Solution: use synchronisation to avoid

HPCGAP offers: semaphores, channels, synchronisation variables
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Deadlock

Locking is useful, but what if two threads wait for each other’s lock:

gap> a := ShareSpecialObj([1,2,3]);;
gap> b := ShareSpecialObj([1,2,3]);;
gap> c := CreateSemaphore(0);
<semaphore 0xb557060: count = 0>
gap> while true do atomic a do atomic b do
> a[1] := b[1]; od; od;
> SignalSemaphore(c); od;
!sh
--- Switching to thread 5
[5] gap> while true do atomic b do atomic a do
[5] > a[1] := b[1]; od; od;
[5] > SignalSemaphore(c); od;

When only one loop runs, c will increase steadily.

When the second loop is started, everything will deadlock.
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Deadlock

Solution:

Use locking only if necessary.

Lock briefly, release quickly.
If you need to lock two things, use only one atomic statement.
If this is impossible, always lock in the same order.
GAP’s region precedence should protect you.
Do not use ShareSpecialObj!

HPCGAP offers: deadlock protection, region precedence
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Communication

Basic problem: Data is in one place but is needed in another.

This is mostly a distributed memory problem, but not exclusively!.

Moving data, or communication becomes necessary.

Communication takes time, bandwidth is limited as well as latency.

See talk about parallel orbit enumeration.

Solution:
reorganise algorithms to keep data local,
keep your caches in mind,
use buffers and queueing to avoid latency,
estimate communication needs, compare with computational
throughput.

HPCGAP offers: shared memory model, fast object serialisation,
access to fast networking using MPI and ZeroMQ
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NUMA and the memory wall

As Markus explained, on a NUMA (Non-Uniform Memory Access)
machine, RAM is not all the same.

But it gets worse . . .

When I was a child, microprocessors ran at speeds like 1 MHz.
Today, a typical clock rate is 2 GHz: 2000 times faster in 30 years.

Back then, reading one byte from memory took about 300 ns.
Today, reading the first word in a new place takes 7 ns and subsequent
words take 0.5 ns each.

This is in many cases only about 42 times faster in 30 years.

As if this is not bad enough:
in modern machines, multiple cores share this bandwidth!

In lovelace and babbage, 8 cores share 64 GB, access to “remote
memory” is considerably slower.

This is called the memory wall.
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NUMA and the memory wall

Solution:

view memory access bandwidth and latency as additional scarce
resources to manage,

use your caches on all levels,
be aware or beware of NUMA,
maybe use more explicit data movement rather than global shared
memory assumptions — the distributed model is back!
This will also be relevant for GPU computing.
Sometimes, explicit copying provides you with locality.

HPCGAP offers: thread local allocation, parallel garbage collection,
MPI and ZeroMQ for explicit communication.
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Debugging parallel programs

Debugging a parallel program can be a nightmare:

Many things happen at the same time.

Usually one does not even have a terminal for each thread.
Correct behaviour sometimes depends on more or less random
order of some events (race conditions).
Runs are often not reproducible.
In a parallel program there is no notion of single stepping.
Heisenbugs are common.
Often one has worse than expected performance and has to find
the reason.
Time measurements and profiling are more difficult.

Solution:
There is no really good solution.
Explicit synchronisation can help.
Waiting for communication or locks is often the problem.

HPCGAP offers: nice UI and break loops for individual threads.
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