Kazhdan-Lusztig basis and Wedderburn decomposition

Max Neunhöffer Lehrstuhl D für Mathematik RWTH Aachen

Algebraic groups and finite reductive groups Lausanne, 14.6.2005

Max Neunhöffer Kazhdan-Lusztig basis and Wedderburn decomposition

Setup

- Let *W*, *S* be a finite Coxeter group, $A := \mathbb{Z}[v, v^{-1}]$
- $L: W \to \mathbb{Z}$ a weight function with L(s) > 0 for $s \in S$

$$[L(ww') = L(w) + L(w') \text{ if } \ell(ww') = \ell(w) + \ell(w')]$$

 \mathcal{H} the Iwahori-Hecke algebra of W over A with parameters $v^{L(s)}$ $K \supseteq \mathbb{Q}(v)$ splitting field for the extension of scalars \mathcal{H}_K

Kazhdan-Lusztig:

- \mathcal{H} has A-bases $(C_w)_{w \in W}$ and $(D_{z_{\cdot}^{-1}})_{z \in W}$
- Left cells Λ_d : $\mathcal{D} \subseteq W$ and $W = \bigcup_{d \in \mathcal{D}} \Lambda_d$ with $\Lambda_d \cap \mathcal{D} = \{d\}$

• Left cell modules: $LC^{(\Lambda_d)}$ as quotient of left ideals

Lusztig:

- The asymptotic algebra \mathcal{J} with A-basis $(t_z)_{z \in W}$
- A homomorphism of A-algebras $\phi : \mathcal{H} \to \mathcal{J}$
- Is isomorphism $\phi : \mathcal{H}_K \to \mathcal{J}_K$ after extension of scalars

Preparations Main results

Main results I

Proposition 1*:

$$\mathscr{B}^{\vee} := (C_d D_{z^{-1}})_{d \in \mathcal{D}, z \in \Lambda_d}$$
 is a *K*-basis of \mathscr{H}_K .

Proposition 2^{*}: The right regular $\mathcal{H}_{\mathcal{K}}$ -module decomposes as a direct sum of right ideals \mathcal{R}_d :

$$\mathcal{H}_{K} = \bigoplus_{d \in \mathcal{D}} \mathcal{R}_{d} \quad \text{with} \quad \mathcal{R}_{d} := \left\langle C_{d} D_{z^{-1}} \mid z \in \Lambda_{d} \right\rangle_{K} \cong \left(\mathsf{LC}_{K}^{(\Lambda_{d})} \right)^{*}$$

Proposition 3*: If $LC_{K}^{(\Lambda_{d})}$ is a simple \mathcal{H}_{K} -module, then

$$\phi\left(\mathbf{C}(\mathbf{d})\cdot\left(\mathbf{C}_{z}\mathbf{D}_{\mathbf{d}^{-1}}\right)^{\dagger}\right)=\pm t_{z}$$
 for all $z\in\Lambda_{\mathbf{d}}$

with some constant $c(d) \in K$ and an algebra involution $h \mapsto h^{\dagger}$.

Main results II

Proposition 4: Let Λ_d be a left cell and $LC_K^{(\Lambda_d)}$ be simple. Then $\mathcal{B}_d := (c(d)C_x D_{y^{-1}})_{x,y \in \Lambda_d}$

Main results

is *K*-linear independent and spans the isotypic component of \mathcal{H}_{K} corresponding to the simple module $LC_{K}^{(\Lambda_{d})}$. Further:

$$c(d)C_{x}D_{y^{-1}} \cdot c(d)C_{u}D_{w^{-1}} = \delta_{y,u} \cdot c(d)C_{x}D_{w^{-1}}$$

for all $x, y, u, w \in \Lambda_d$.

Proposition 5: If all $LC_{K}^{(\Lambda_{d})}$ are simple and $LC_{K}^{(\Lambda_{d_{1}})}, \ldots, LC_{K}^{(\Lambda_{d_{n}})}$ are representatives of the isomorphism types of simple \mathcal{H}_{K} -modules, then

$$(c(d_i)C_xD_{y^{-1}})_{1\leq i\leq n;x,y\in\Lambda_i}$$

is a Wedderburn basis of $\mathcal{H}_{\mathcal{K}}$.

H is a symmetric algebra Left cell modules revisited Conjectures P1 to P15

\mathcal{H} is a symmetric algebra

 \mathcal{H} has a symmetrizing trace map $\tau : \mathcal{H} \to A$ with:

- τ is A-linear
- $\tau(h \cdot h') = \tau(h' \cdot h)$ for all $h, h' \in \mathcal{H}$
- $(C_w)_{w \in W}$ is dual to $(D_{y^{-1}})_{y \in W}$, that is: $\tau(C_w \cdot D_{y^{-1}}) = \delta_{w,y}$
- τ is non-degenerate: every A-basis of \mathcal{H} has a dual basis

If $\text{Irr}(\mathcal{H}_{\mathcal{K}})$ is the set of irreducible characters of $\mathcal{H}_{\mathcal{K}},$ then

$$\tau(h) = \sum_{\chi \in \mathsf{Irr}(\mathcal{H}_{K})} \frac{\chi(h)}{c_{\chi}} \quad \text{for } h \in \mathcal{H}_{K}$$

where $0 \neq c_{\chi} \in K$ are the Schur elements.

H is a symmetric algebra Left cell modules revisited Conjectures P1 to P15

Left cell modules revisited

Let Λ_d be a left cell. Then LC^(Λ_d) has a basis indexed by Λ_d . The representing matrix M(h) of the action of h on LC^(Λ_d) is:

$$M_{y,x}(h) = \tau \left(D_{y^{-1}} \cdot h \cdot C_x \right)$$
 for $x, y \in \Lambda_d$.

 $(C_w)_{w \in W}$ is dual to $(D_{y^{-1}})_{y \in W}$ with respect to τ , thus we have:

$$h = \sum_{z \in W} \alpha_z C_z = \sum_{y \in W} \tau (D_{y^{-1}} \cdot h) C_y \quad \text{for all } h \in \mathcal{H}.$$

Proof: To find α_y , multiply by $D_{y^{-1}}$ and apply τ .

H is a symmetric algebra Left cell modules revisited Conjectures P1 to P15

Conjectures P1 to P15

Propositions 1* to 3* depend on Conjectures P1 to P15 in:

G. Lusztig, "*Hecke Algebras with Unequal Parameters*", Vol. 18 of CRM Monograph Series, AMS, Providence, RI, 2003.

However, these are proved at least in the "single parameter case" for finite Weyl groups, that is, *W* is finite and $L = \ell$.

We show Propositions 1* to 3* under the assumption of P1 to P15.

Wedderburn decomposition Preimages abstractly and concretely

Proof of Proposition 4

Let Λ_d be a left cell and $LC_{\kappa}^{(\Lambda_d)}$ be simple with character χ . Then a formula for Wedderburn basis elements $E_{\chi,\chi}$ yields:

$$E_{x,y} = \frac{1}{c_{\chi}} \sum_{w \in W} M_{y,x}(C_w) \cdot D_{w^{-1}}$$

= $\frac{1}{c_{\chi}} \sum_{w \in W} \tau(D_{y^{-1}} \cdot C_w \cdot C_x) \cdot D_{w^{-1}}$
= $\frac{1}{c_{\chi}} \sum_{w \in W} \tau(C_w \cdot C_x D_{y^{-1}}) \cdot D_{w^{-1}} = c_{\chi}^{-1} \cdot C_x D_{y^{-1}}$

Prop. 4 follows from $E_{x,y} \cdot E_{u,w} = \delta_{y,u} \cdot E_{x,w}$ for $x, y, u, w \in \Lambda_d$. We have $c(d) = c_{\chi}^{-1}$. Preparations and main results Some useful stuff Proofs ... and concretely

Preimages abstractly ...

From here on, we assume P1 to P15.

Known: The formula for the Lusztig homomorphism is:

$$\phi(h^{\dagger}) = \sum_{\substack{d \in \mathcal{D} \\ z \in \Lambda_d}} \tau(h \cdot C_d D_{z^{-1}}) \cdot \hat{n}_z \cdot t_z \quad \text{for all } h \in \mathcal{H},$$

where $\hat{n}_z \in \{1, -1\}$ are known signs.

Because $\phi : \mathcal{H}_{\mathcal{K}} \to \mathcal{J}_{\mathcal{K}}$ is an isomorphism, we have:

For every $d \in \mathcal{D}$ and $z \in \Lambda_d$ there is an $h_z \in \mathcal{H}_K$ with

$$\tau(h_z \cdot C_{d'} D_{z'^{-1}}) = \delta_{z,z'} \quad \text{for all } d' \in \mathcal{D} \text{ and } z' \in \Lambda_d.$$

Thus, there is a basis of preimages $(h_z)_{z \in W}$ of the basis $(\hat{n}_z t_z)_{z \in W}$ and $(C_d D_{z^{-1}})_{d \in \mathcal{D}, z \in \Lambda_d}$ is a *K*-basis of \mathcal{H}_K .

Preparations and main results Some useful stuff Preimages abstractly ... Proofs ... and concretely

... and concretely

Let Λ_d be a left cell and $LC^{(\Lambda_d)}$ be simple with character χ . For fixed $d \in \mathcal{D}$ and $z \in \Lambda_d$, we are looking for the unique element $h_z \in \mathcal{H}_K$ with

$$\tau(h_{z} \cdot C_{d'}D_{z'^{-1}}) = \delta_{z,z'} \quad \text{for all } d' \in \mathcal{D} \text{ and } z' \in \Lambda_{d}.$$

We want to show, that $h_z = c_{\chi}^{-1} \cdot C_z D_{d^{-1}}$, so we want:

$$\tau(\mathbf{C}_{\chi}^{-1} \cdot \mathbf{C}_{\mathbf{Z}} \mathbf{D}_{d^{-1}} \cdot \mathbf{C}_{d'} \mathbf{D}_{\mathbf{Z}'^{-1}}) = \delta_{\mathbf{Z}, \mathbf{Z}'}.$$

Method of proof:

- First use P1 to P15 to show that $\tau(C_z D_{d^{-1}} \cdot C_{d'} D_{z'^{-1}}) = 0$ unless d = d'. In that case we have $z, d, z' \in \Lambda_d$.
- Then use Proposition 4 to get

$$\tau(C_{\chi}^{-1} \cdot C_{Z} D_{d^{-1}} \cdot C_{d} D_{Z'^{-1}}) = \tau(C_{Z} D_{Z'^{-1}}) = \delta_{Z,Z'}.$$