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Diagrams and their problems Let’s look at the toys

We draw connected finite graphs in the plane and label them:
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Faces are oriented clockwise.
We view each edge as a pair of opposite directed edges: half-edges.
Each half-edge is labelled at the start vertex and along the half-edge.
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Diagrams and their problems The diagram boundary problem

The diagram boundary problem

Let R be a finite set of cyclic words, called relators.

Problem (Diagram boundary problem)

Algorithmically devise a procedure that decides for any cyclic word w,
whether or not there is a diagram such that

every internal region is labelled by a relator, and
the external boundary is labelled by w.
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Diagrams and their problems The diagram boundary problem
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Diagrams and their problems The rules of the game: Corner labels and Letters

Rules for the labels

We label every half-edge with two symbols,
one for the corner to the right of where it starts, and
one for the right hand side of it:

S X

Y R

We now need rules for the corner labels and the edge labels.
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Diagrams and their problems The rules of the game: vertices

Definition (Corner structures)
A corner structure is a set S with a subset S+ ⊂ S, such that
S0 := S ∪̇ {0} is a semigroup with 0 and:

if xy ∈ S+ for x , y ∈ S, then yx ∈ S+.

The elements in S+ are called acceptors.

Usually we will have: for all x ∈ S there is a y ∈ S with xy ∈ S+.

Lemma (Cyclicity)
Let S be a corner structure, if s1s2 · · · sk ∈ S+, then all rotations
sisi+1 · · · sks1s2 · · · si−1 ∈ S+.

Vertex rules
The corner labels are from a corner structure S, a vertex is valid, if the
clockwise product of its corner labels is an acceptor.
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Diagrams and their problems The rules of the game: vertices

Examples of corner structures

Let G be a group. Let P := G and P+ := {1}.
Let G1, . . . ,Gk be groups. Let Q :=

⋃̇
Gi and

Q+ := {1Gi | 1 ≤ i ≤ k}. Elements of a single Gi multiply as
before. Products across factors are all 0.
Take any groupoid, undefined products are 0, identities accept.
K6 := {s, t ,e,b, r , l}, K6+ := {s,e},

s t e b r l
s · s · · · ·
t s t · · · l
e · · · e · ·
b · · e b r ·
r · r · · · e
l · · · l s ·

Note: rl = e and lr = s, cyclicity, “inverses”, two idempotents.
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Diagrams and their problems The rules of the game: edges

Definition (Edge alphabet)

An edge alphabet is a set X with an involution : X → X .

(This is actually a special case of a corner structure.)

Edge rules

The edge labels are from an edge alphabet, a pair of half-edges
forming an edge with labels X and Y is valid, if Y = X .

(For the experts:
This is a generalisation of the rules of van Kampen diagrams.)
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Diagrams and their problems Definition of a valid diagram

Let S be a corner structure and X be an edge alphabet.

Definition (Set of relators)
A set of relators R is a finite set of cyclic alternating words in S and X .

Definition (Valid diagram)

Let R be a set of relators in S and X . A valid diagram is:
a finite plane graph with half-edge set Ê and a labelling function
` : Ê → S × X ,e 7→ (`S(e), `X (e)), such that

`S(e1) · `S(e2) · `S(e3) · · · · · `S(ek ) ∈ S+ for every clockwise cyclic
sequence e1,e2, . . . ,ek of half-edges leaving the same vertex,
`X (e) = `X (e′) for all edges {e,e′} consisting of half-edges e,e′,
(`S(e1), `X (e1), . . . , `S(ek ), `X (ek ))

	 ∈ R for every clockwise cycle
(e1,e2, . . . ,ek )

	 of half-edges around an internal face.
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Diagrams and their problems The fundamental diagram problems

Let 〈S;X | R〉 be a presentation, that is:
S is a corner structure,
X is an edge alphabet and
R is a set of relators in S and X .

Problem (Diagram boundary problem)

Algorithmically devise a procedure that decides for any cyclic
alternating word w in S and X whether or not there is a valid diagram
such that the external face is labelled by w.

Problem (Isoperimetric inequality)
Algorithmically find and prove a function D : N→ N, such that for every
cyclic alternating word w in S and X of length 2k that is the boundary
label of a valid diagram, there is one with at most D(k) internal faces.

If there is a linear D, we call 〈S;X | R〉 hyperbolic.
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If there is a linear D, we call 〈S;X | R〉 hyperbolic.
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Semigroup presentations K6 at work

With K6 we can do rewrite systems, if no rewrite has an empty side:
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,S+ = {s,e}

X = {A,B,C,D,E ,F ,G,U} ( is idX )
This encodes UABCG→ DEF using:

{ABC → DE ,UD → A,EFG→ BC}

ABC → DE is encoded as (bCrBrAtDlE)	,
we “prove” (sUlAlBlClGeFrErD)	.
S accepts st∗ + eb∗ + rt∗lb∗ and all rotations.
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Other Applications

Other Applications

These diagrams and their two fundamental problems encode

the word problem in quotients of the free group,
the word problem in quotients of the modular group,
the word problem for relative presentations (relative to one
subgroup gives a Howie diagram)
the rewrite decision problem for rewrite systems, in which no side
of a rewrite is empty,
the word problem in finite semigroup presentations,
jigsaw-puzzles in which you can use arbitrarily many copies of
each piece,
the word problem in monoids?
computations of non-deterministic Turing machines?
etc. ???

You just have to chose the right corner structure and edge alphabet!
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An algorithmic approach Curvature

Combinatorial Curvature

Find “pieces”, and remove vertices of valency 1 and 2:

compute the finite list of all possible edges,
this produces a new edge alphabet, edges now have different
lengths, refer to original edges as mini-edges,
denote the new set of half-edges in a diagram by Ê .

Combinatorical curvature: We endow
each vertex with +1 unit of combinatorial curvature,
each edge with −1 unit of combinatorial curvature and
each internal face with +1 unit of combinatorial curvature.

Euler’s formula
The total sum of our combinatorial curvature is always +1.
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Combinatorical curvature: We endow
each vertex with +1 unit of combinatorial curvature,
each edge with −1 unit of combinatorial curvature and
each internal face with +1 unit of combinatorial curvature.

Euler’s formula
The total sum of our combinatorial curvature is always +1.

Max Neunhöffer (University of St Andrews) Generalisations of Small Cancellation Theory 9 April 2013 13 / 20



An algorithmic approach Curvature

Combinatorial Curvature

Find “pieces”, and remove vertices of valency 1 and 2:
compute the finite list of all possible edges,
this produces a new edge alphabet,

edges now have different
lengths, refer to original edges as mini-edges,
denote the new set of half-edges in a diagram by Ê .

Combinatorical curvature: We endow
each vertex with +1 unit of combinatorial curvature,
each edge with −1 unit of combinatorial curvature and
each internal face with +1 unit of combinatorial curvature.

Euler’s formula
The total sum of our combinatorial curvature is always +1.

Max Neunhöffer (University of St Andrews) Generalisations of Small Cancellation Theory 9 April 2013 13 / 20



An algorithmic approach Curvature

Combinatorial Curvature

Find “pieces”, and remove vertices of valency 1 and 2:
compute the finite list of all possible edges,
this produces a new edge alphabet, edges now have different
lengths,

refer to original edges as mini-edges,
denote the new set of half-edges in a diagram by Ê .
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An algorithmic approach Curvature redistribution — Phase 1 of officer Tom

Idea (Curvature redistribution — Officers)
We redistribute the curvature locally in a conservative way.

We call a curvature redistribution scheme an “officer”.

Here, I want to describe our “Officer Tom”:

In Phase 1 Tom moves the negative curvature to the vertices:

−1/2

−1/2

A vertex with valency v ≥ 3 will now have +1− v
2 < 0.

Faces still have +1, edges now have 0.
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An algorithmic approach Curvature redistribution — Phase 2 of officer Tom

In Phase 2 Tom moves the negative curvature to the vertices:

*
0<c<1/2

+1−v/2

+1

Corner values for Tom
A corner value c of Tom depends on two edges that are adjacent on a
face.

Tom moves c units of curvature from the face to the vertex.
The default value for c is 1/6 if the vertex can have valency 3 and 1/4
otherwise.
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An algorithmic approach What Tom wants to achieve

Tom — and officers in general — want to redistribute the curvature,
such that for all permitted diagrams after redistribution

every internal face has < −ε curvature (for some explicit ε > 0),
every vertex has ≤ 0 curvature.
every edge has 0 curvature,

every face with more than one external edge has ≤ 0 curvature.

Consequence
=⇒ All the positive curvature is on faces touching the boundary once.

Facts:
All boundaries of diagrams have a permitted diagram as proof.
The total positive curvature ≤ n (boundary length).
Let F := #internal faces, then

1 < n − F · ε =⇒ F < ε−1 · n =⇒ hyperbolic
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An algorithmic approach Diversion: An important lemma

Let L := {1,2, . . . , `} and a1,a2, . . . ,a` ∈ R and S :=
∑

m∈L am.

Define πL : Z→ L such that z ≡ πL(z) (mod `).

Lemma (Goes up and stays up)
If S ≥ 0 then there is a j ∈ L such that for all i ∈ N the partial sum

sj,i :=
i−1∑
m=0

aπL(j+m) ≥ 0.

i 1 2 3 4 5 6 7
ai 2 -3 4 1 -5 3 2
s1,i 2 -1 3 4 -1 2 4
s6,i 3 5 7 4 8 9 4

Corollary
Assume that there are k ∈ N and ε ≥ 0 such that for all j ∈ L there is
an i ≤ k with sj,i < −ε, then S < −ε · `/k.
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An algorithmic approach Sunflower

Sunflower

To show that every internal face has curvature < −ε:

L 2

L
1

c

L

Use Goes Up and Stays Up on L1+L2
2L − c.
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An algorithmic approach Poppy

Poppy

To show that every internal vertex has curvature ≤ 0:

3
c c

4

c
2

c
1

Use Goes Up and Stays Up on c + 1−v/2
v = c + 2−v

v .

Do valency v = 3 first, if nothing found, increase v .
This terminates: higher valencies tend to be negatively curved anyway.
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An algorithmic approach Overview over Tom analyis

Overview over Tom analysis

What have we achieved?

If we did not find any bad sunflower or poppy, we have
determined an explicit ε,
proved hyperbolicity, and
can in principle solve the diagram boundary problem.

If we did find bad sunflowers or poppy, we can still
improve our choices for the corner values
(leads to difficult optimisation/linear program problems),
forbid more diagrams (if possible)
(need to show that every boundary is proved by a permitted one),
or switch to a more powerful officer
(with further sight or redistribution), . . .

and try again. If 〈S,X ;R〉 is not hyperbolic, this will not work.
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