Generalisations of Small Cancellation Theory

Max Neunhöffer

joint work with Jeffrey Burdges, Stephen Linton,

Richard Parker and Colva Roney-Dougal

NBSAN meeting St Andrews, 9 April 2013

Faces are oriented clockwise.

Faces are oriented clockwise.

We view each edge as a pair of opposite directed edges: half-edges.

Faces are oriented clockwise.

We view each edge as a pair of opposite directed edges: half-edges. Each half-edge is labelled at the start vertex and along the half-edge.

The diagram boundary problem

Let *R* be a finite set of cyclic words, called relators.

The diagram boundary problem

Let *R* be a finite set of cyclic words, called relators.

Problem (Diagram boundary problem)

Algorithmically devise a procedure that decides for any cyclic word w, whether or not there is a diagram such that

- every internal region is labelled by a relator, and
- the external boundary is labelled by w.

Rules for the labels

We label every half-edge with two symbols,

- one for the corner to the right of where it starts, and
- one for the right hand side of it:

We now need rules for the corner labels and the edge labels.

A corner structure is a set *S* with a subset $S_+ \subset S$, such that $S_0 := S \cup \{0\}$ is a semigroup with 0 and:

```
if xy \in S_+ for x, y \in S, then yx \in S_+.
```

The elements in S_+ are called acceptors.

A corner structure is a set *S* with a subset $S_+ \subset S$, such that $S_0 := S \cup \{0\}$ is a semigroup with 0 and:

```
if xy \in S_+ for x, y \in S, then yx \in S_+.
```

The elements in S_+ are called acceptors. Usually we will have: for all $x \in S$ there is a $y \in S$ with $xy \in S_+$.

A corner structure is a set *S* with a subset $S_+ \subset S$, such that $S_0 := S \cup \{0\}$ is a semigroup with 0 and:

```
if xy \in S_+ for x, y \in S, then yx \in S_+.
```

The elements in S_+ are called acceptors. Usually we will have: for all $x \in S$ there is a $y \in S$ with $xy \in S_+$.

Lemma (Cyclicity)

Let *S* be a corner structure, if $s_1s_2 \cdots s_k \in S_+$, then all rotations $s_is_{i+1} \cdots s_ks_1s_2 \cdots s_{i-1} \in S_+$.

A corner structure is a set *S* with a subset $S_+ \subset S$, such that $S_0 := S \cup \{0\}$ is a semigroup with 0 and:

```
if xy \in S_+ for x, y \in S, then yx \in S_+.
```

The elements in S_+ are called acceptors. Usually we will have: for all $x \in S$ there is a $y \in S$ with $xy \in S_+$.

Lemma (Cyclicity)

Let *S* be a corner structure, if $s_1s_2 \cdots s_k \in S_+$, then all rotations $s_is_{i+1} \cdots s_ks_1s_2 \cdots s_{i-1} \in S_+$.

Vertex rules

The corner labels are from a corner structure *S*,

A corner structure is a set *S* with a subset $S_+ \subset S$, such that $S_0 := S \cup \{0\}$ is a semigroup with 0 and:

```
if xy \in S_+ for x, y \in S, then yx \in S_+.
```

The elements in S_+ are called acceptors. Usually we will have: for all $x \in S$ there is a $y \in S$ with $xy \in S_+$.

Lemma (Cyclicity)

Let *S* be a corner structure, if $s_1s_2 \cdots s_k \in S_+$, then all rotations $s_is_{i+1} \cdots s_ks_1s_2 \cdots s_{i-1} \in S_+$.

Vertex rules

The corner labels are from a corner structure *S*, a vertex is valid, if the clockwise product of its corner labels is an acceptor.

• Let G be a group. Let P := G and $P_+ := \{1\}$.

- Let G be a group. Let P := G and $P_+ := \{1\}$.
- Let G_1, \ldots, G_k be groups. Let $Q := \bigcup G_i$

- Let G be a group. Let P := G and $P_+ := \{1\}$.
- Let G_1, \ldots, G_k be groups. Let $Q := \bigcup G_i$ and $Q_+ := \{1_{G_i} \mid 1 \le i \le k\}.$

- Let G be a group. Let P := G and $P_+ := \{1\}$.
- Let G_1, \ldots, G_k be groups. Let $Q := \bigcup G_i$ and $Q_+ := \{1_{G_i} \mid 1 \le i \le k\}$. Elements of a single G_i multiply as before.

- Let G be a group. Let P := G and $P_+ := \{1\}$.
- Let G₁,..., G_k be groups. Let Q := ∪G_i and Q₊ := {1_{Gi} | 1 ≤ i ≤ k}. Elements of a single G_i multiply as before. Products across factors are all 0.

- Let G be a group. Let P := G and $P_+ := \{1\}$.
- Let G₁,..., G_k be groups. Let Q := ∪G_i and Q₊ := {1_{G_i} | 1 ≤ i ≤ k}. Elements of a single G_i multiply as before. Products across factors are all 0.
- Take any groupoid, undefined products are 0, identities accept.

- Let G be a group. Let P := G and $P_+ := \{1\}$.
- Let G₁,..., G_k be groups. Let Q := ∪G_i and Q₊ := {1_{G_i} | 1 ≤ i ≤ k}. Elements of a single G_i multiply as before. Products across factors are all 0.
- Take any groupoid, undefined products are 0, identities accept.

•
$$K_6 := \{s, t, e, b, r, l\},$$

- Let G be a group. Let P := G and $P_+ := \{1\}$.
- Let G₁,..., G_k be groups. Let Q := UG_i and Q₊ := {1_{G_i} | 1 ≤ i ≤ k}. Elements of a single G_i multiply as before. Products across factors are all 0.
- Take any groupoid, undefined products are 0, identities accept.

•
$$K_6 := \{s, t, e, b, r, l\}, K_{6+} := \{s, e\},$$

- Let G be a group. Let P := G and $P_+ := \{1\}$.
- Let G₁,..., G_k be groups. Let Q := ∪G_i and Q₊ := {1_{G_i} | 1 ≤ i ≤ k}. Elements of a single G_i multiply as before. Products across factors are all 0.
- Take any groupoid, undefined products are 0, identities accept.

•
$$K_6 := \{s, t, e, b, r, I\}, K_{6+} := \{s, e\},$$

Note: rl = e and lr = s, cyclicity, "inverses", two idempotents.

An edge alphabet is a set *X* with an involution $\overline{}: X \rightarrow X$.

An edge alphabet is a set *X* with an involution $\overline{}: X \rightarrow X$.

(This is actually a special case of a corner structure.)

An edge alphabet is a set X with an involution $\overline{}: X \rightarrow X$.

(This is actually a special case of a corner structure.)

Edge rules

The edge labels are from an edge alphabet, a pair of half-edges forming an edge with labels *X* and *Y* is valid, if $Y = \overline{X}$.

An edge alphabet is a set X with an involution $\overline{}: X \rightarrow X$.

(This is actually a special case of a corner structure.)

Edge rules

The edge labels are from an edge alphabet, a pair of half-edges forming an edge with labels *X* and *Y* is valid, if $Y = \overline{X}$.

(For the experts:

This is a generalisation of the rules of van Kampen diagrams.)

Definition (Set of relators)

A set of relators *R* is a finite set of cyclic alternating words in *S* and *X*.

Definition (Set of relators)

A set of relators *R* is a finite set of cyclic alternating words in *S* and *X*.

Definition (Valid diagram)

Let *R* be a set of relators in *S* and *X*. A valid diagram is: a finite plane graph with half-edge set \hat{E} and a labelling function $\ell: \hat{E} \to S \times X, e \mapsto (\ell_S(e), \ell_X(e))$, such that

Definition (Set of relators)

A set of relators *R* is a finite set of cyclic alternating words in *S* and *X*.

Definition (Valid diagram)

Let *R* be a set of relators in *S* and *X*. A valid diagram is: a finite plane graph with half-edge set \hat{E} and a labelling function $\ell: \hat{E} \to S \times X, e \mapsto (\ell_S(e), \ell_X(e))$, such that

- ℓ_S(e₁) · ℓ_S(e₂) · ℓ_S(e₃) · · · · ℓ_S(e_k) ∈ S₊ for every clockwise cyclic sequence e₁, e₂, . . . , e_k of half-edges leaving the same vertex,
- $\ell_X(e) = \overline{\ell_X(e')}$ for all edges $\{e, e'\}$ consisting of half-edges e, e',

Definition (Set of relators)

A set of relators *R* is a finite set of cyclic alternating words in *S* and *X*.

Definition (Valid diagram)

Let *R* be a set of relators in *S* and *X*. A valid diagram is: a finite plane graph with half-edge set \hat{E} and a labelling function $\ell: \hat{E} \to S \times X, e \mapsto (\ell_S(e), \ell_X(e))$, such that

- ℓ_S(e₁) · ℓ_S(e₂) · ℓ_S(e₃) · · · · ℓ_S(e_k) ∈ S₊ for every clockwise cyclic sequence e₁, e₂, . . . , e_k of half-edges leaving the same vertex,
- $\ell_X(e) = \overline{\ell_X(e')}$ for all edges $\{e, e'\}$ consisting of half-edges e, e',
- $(\ell_S(e_1), \ell_X(e_1), \dots, \ell_S(e_k), \ell_X(e_k))^{\circ} \in R$ for every clockwise cycle $(e_1, e_2, \dots, e_k)^{\circ}$ of half-edges around an internal face.

- S is a corner structure,
- X is an edge alphabet and
- *R* is a set of relators in *S* and *X*.

Problem (Diagram boundary problem)

Algorithmically devise a procedure that decides for any cyclic alternating word w in S and X whether or not there is a valid diagram such that the external face is labelled by w.

- S is a corner structure,
- X is an edge alphabet and
- *R* is a set of relators in *S* and *X*.

Problem (Diagram boundary problem)

Algorithmically devise a procedure that decides for any cyclic alternating word w in S and X whether or not there is a valid diagram such that the external face is labelled by w.

Problem (Isoperimetric inequality)

Algorithmically find and prove a function $\mathcal{D} : \mathbb{N} \to \mathbb{N}$, such that for every cyclic alternating word w in S and X of length 2k that is the boundary label of a valid diagram,

- S is a corner structure,
- X is an edge alphabet and
- *R* is a set of relators in *S* and *X*.

Problem (Diagram boundary problem)

Algorithmically devise a procedure that decides for any cyclic alternating word w in S and X whether or not there is a valid diagram such that the external face is labelled by w.

Problem (Isoperimetric inequality)

Algorithmically find and prove a function $\mathcal{D} : \mathbb{N} \to \mathbb{N}$, such that for every cyclic alternating word w in S and X of length 2k that is the boundary label of a valid diagram, there is one with at most $\mathcal{D}(k)$ internal faces.

- S is a corner structure,
- X is an edge alphabet and
- *R* is a set of relators in *S* and *X*.

Problem (Diagram boundary problem)

Algorithmically devise a procedure that decides for any cyclic alternating word w in S and X whether or not there is a valid diagram such that the external face is labelled by w.

Problem (Isoperimetric inequality)

Algorithmically find and prove a function $\mathcal{D} : \mathbb{N} \to \mathbb{N}$, such that for every cyclic alternating word w in S and X of length 2k that is the boundary label of a valid diagram, there is one with at most $\mathcal{D}(k)$ internal faces.

If there is a linear \mathcal{D} , we call $\langle S; X | R \rangle$ hyperbolic.
With K_6 we can do rewrite systems, if no rewrite has an empty side:

 $X = \{A, B, C, D, E, F, G, U\} (^{-} \text{ is id}_X)$ This encodes $UABCG \rightarrow DEF$ using:

 $\{ABC \rightarrow DE, UD \rightarrow A, EFG \rightarrow BC\}$

S

With K_6 we can do rewrite systems, if no rewrite has an empty side:

$$= \begin{bmatrix} s & t & e & b & r & I \\ s & s & s & s & s & s & s \\ t & s & t & s & s & s & s & s \\ e & s & s & s & s & s & s & s \\ b & s & s & e & b & r & s & s \\ r & s & r & s & s & s & s & s \\ I & s & s & s & s & s & s & s \\ \end{bmatrix}$$

 $X = \{A, B, C, D, E, F, G, U\} (\text{is id}_X)$ This encodes $UABCG \rightarrow DEF$ using:

 $\{ABC \rightarrow DE, UD \rightarrow A, EFG \rightarrow BC\}$

 $ABC \rightarrow DE$ is encoded as $(bCrBrAtDIE)^{\circ}$,

S

With K_6 we can do rewrite systems, if no rewrite has an empty side:

$$= \begin{bmatrix} s t e b r 1 \\ s s t e b r 1 \\ s s t e b r e \\ t s t e e b r \\ s s t e e b r \\ s s e b r \\ s s$$

 $X = \{A, B, C, D, E, F, G, U\} (\ \ \text{is id}_X)$ This encodes $UABCG \rightarrow DEF$ using:

 $\{ABC \rightarrow DE, UD \rightarrow A, EFG \rightarrow BC\}$

 $ABC \rightarrow DE$ is encoded as $(bCrBrAtDIE)^{\circ}$, we "prove" $(sUIAIBICIGeFrErD)^{\circ}$. S

With K_6 we can do rewrite systems, if no rewrite has an empty side:

 $X = \{A, B, C, D, E, F, G, U\} (\ \ is id_X)$ This encodes $UABCG \rightarrow DEF$ using:

 $\{\textit{ABC} \rightarrow \textit{DE}, \textit{UD} \rightarrow \textit{A}, \textit{EFG} \rightarrow \textit{BC}\}$

 $ABC \rightarrow DE$ is encoded as $(bCrBrAtDIE)^{\circ}$, we "prove" $(sUIAIBICIGeFrErD)^{\circ}$.

S accepts $st^* + eb^* + rt^*lb^*$ and all rotations.

These diagrams and their two fundamental problems encode

• the word problem in quotients of the free group,

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
- the rewrite decision problem for rewrite systems, in which no side of a rewrite is empty,

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
- the rewrite decision problem for rewrite systems, in which no side of a rewrite is empty,
- the word problem in finite semigroup presentations,

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
- the rewrite decision problem for rewrite systems, in which no side of a rewrite is empty,
- the word problem in finite semigroup presentations,
- jigsaw-puzzles

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
- the rewrite decision problem for rewrite systems, in which no side of a rewrite is empty,
- the word problem in finite semigroup presentations,
- jigsaw-puzzles in which you can use arbitrarily many copies of each piece,

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
- the rewrite decision problem for rewrite systems, in which no side of a rewrite is empty,
- the word problem in finite semigroup presentations,
- jigsaw-puzzles in which you can use arbitrarily many copies of each piece,
- the word problem in monoids?

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
- the rewrite decision problem for rewrite systems, in which no side of a rewrite is empty,
- the word problem in finite semigroup presentations,
- jigsaw-puzzles in which you can use arbitrarily many copies of each piece,
- the word problem in monoids?
- computations of non-deterministic Turing machines?

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
- the rewrite decision problem for rewrite systems, in which no side of a rewrite is empty,
- the word problem in finite semigroup presentations,
- jigsaw-puzzles in which you can use arbitrarily many copies of each piece,
- the word problem in monoids?
- computations of non-deterministic Turing machines?
- etc. ???

These diagrams and their two fundamental problems encode

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
- the rewrite decision problem for rewrite systems, in which no side of a rewrite is empty,
- the word problem in finite semigroup presentations,
- jigsaw-puzzles in which you can use arbitrarily many copies of each piece,
- the word problem in monoids?
- computations of non-deterministic Turing machines?
- etc. ???

You just have to chose the right corner structure and edge alphabet!

Find "pieces", and remove vertices of valency 1 and 2:

• compute the finite list of all possible edges,

- compute the finite list of all possible edges,
- this produces a new edge alphabet,

- compute the finite list of all possible edges,
- this produces a new edge alphabet, edges now have different lengths,

- compute the finite list of all possible edges,
- this produces a new edge alphabet, edges now have different lengths, refer to original edges as mini-edges,

- compute the finite list of all possible edges,
- this produces a new edge alphabet, edges now have different lengths, refer to original edges as mini-edges,
- denote the new set of half-edges in a diagram by \hat{E} .

Find "pieces", and remove vertices of valency 1 and 2:

- compute the finite list of all possible edges,
- this produces a new edge alphabet, edges now have different lengths, refer to original edges as mini-edges,
- denote the new set of half-edges in a diagram by \hat{E} .

Combinatorical curvature: We endow

- each vertex with +1 unit of combinatorial curvature,
- each edge with -1 unit of combinatorial curvature and
- each internal face with +1 unit of combinatorial curvature.

Find "pieces", and remove vertices of valency 1 and 2:

- compute the finite list of all possible edges,
- this produces a new edge alphabet, edges now have different lengths, refer to original edges as mini-edges,
- denote the new set of half-edges in a diagram by \hat{E} .

Combinatorical curvature: We endow

- each vertex with +1 unit of combinatorial curvature,
- each edge with -1 unit of combinatorial curvature and
- each internal face with +1 unit of combinatorial curvature.

Euler's formula

The total sum of our combinatorial curvature is always +1.

We redistribute the curvature locally in a conservative way.

We redistribute the curvature locally in a conservative way. We call a curvature redistribution scheme an "officer".

We redistribute the curvature locally in a conservative way. We call a curvature redistribution scheme an "officer".

Here, I want to describe our "Officer Tom":

We redistribute the curvature locally in a conservative way. We call a curvature redistribution scheme an "officer".

Here, I want to describe our "Officer Tom":

In Phase 1 Tom moves the negative curvature to the vertices:

A vertex with valency $v \ge 3$ will now have $+1 - \frac{v}{2} < 0$.

We redistribute the curvature locally in a conservative way. We call a curvature redistribution scheme an "officer".

Here, I want to describe our "Officer Tom":

In Phase 1 Tom moves the negative curvature to the vertices:

A vertex with valency $v \ge 3$ will now have $+1 - \frac{v}{2} < 0$. Faces still have +1, edges now have 0. In Phase 2 Tom moves the negative curvature to the vertices:

Corner values for Tom

A corner value *c* of Tom depends on two edges that are adjacent on a face.

In Phase 2 Tom moves the negative curvature to the vertices:

Corner values for Tom

A corner value *c* of Tom depends on two edges that are adjacent on a face. Tom moves *c* units of curvature from the face to the vertex.

In Phase 2 Tom moves the negative curvature to the vertices:

Corner values for Tom

A corner value *c* of Tom depends on two edges that are adjacent on a face. Tom moves *c* units of curvature from the face to the vertex. The default value for *c* is 1/6 if the vertex can have valency 3 and 1/4 otherwise.

Tom — and officers in general — want to redistribute the curvature, such that for all permitted diagrams after redistribution

- every internal face has $< -\varepsilon$ curvature (for some explicit $\varepsilon > 0$),
- every vertex has ≤ 0 curvature.
- every edge has 0 curvature,

Tom — and officers in general — want to redistribute the curvature. such that for all permitted diagrams after redistribution

- every internal face has $< -\varepsilon$ curvature (for some explicit $\varepsilon > 0$),
- every vertex has < 0 curvature.</p>
- every edge has 0 curvature,
- every face with more than one external edge has ≤ 0 curvature.

Tom — and officers in general — want to redistribute the curvature, such that for all permitted diagrams after redistribution

- every internal face has $< -\varepsilon$ curvature (for some explicit $\varepsilon > 0$),
- every vertex has ≤ 0 curvature.
- every edge has 0 curvature,
- every face with more than one external edge has \leq 0 curvature.

Consequence

 \implies All the positive curvature is on faces touching the boundary once.

Tom — and officers in general — want to redistribute the curvature, such that for all permitted diagrams after redistribution

- every internal face has $< -\varepsilon$ curvature (for some explicit $\varepsilon > 0$),
- every vertex has ≤ 0 curvature.
- every edge has 0 curvature,
- every face with more than one external edge has \leq 0 curvature.

Consequence

 \Longrightarrow All the positive curvature is on faces touching the boundary once.

Facts:

• All boundaries of diagrams have a permitted diagram as proof.
Tom — and officers in general — want to redistribute the curvature, such that for all permitted diagrams after redistribution

- every internal face has $< -\varepsilon$ curvature (for some explicit $\varepsilon > 0$),
- every vertex has ≤ 0 curvature.
- every edge has 0 curvature,
- every face with more than one external edge has \leq 0 curvature.

Consequence

 \Longrightarrow All the positive curvature is on faces touching the boundary once.

Facts:

- All boundaries of diagrams have a permitted diagram as proof.
- The total positive curvature $\leq n$ (boundary length).

What Iom wants to achieve

Tom — and officers in general — want to redistribute the curvature, such that for all permitted diagrams after redistribution

- every internal face has $< -\varepsilon$ curvature (for some explicit $\varepsilon > 0$),
- every vertex has \leq 0 curvature.
- every edge has 0 curvature,
- every face with more than one external edge has \leq 0 curvature.

Consequence

 \Longrightarrow All the positive curvature is on faces touching the boundary once.

Facts:

- All boundaries of diagrams have a permitted diagram as proof.
- The total positive curvature $\leq n$ (boundary length).
- Let F := #internal faces, then

$$1 < n - F \cdot \varepsilon$$

Tom — and officers in general — want to redistribute the curvature, such that for all permitted diagrams after redistribution

- every internal face has $< -\varepsilon$ curvature (for some explicit $\varepsilon > 0$),
- every vertex has ≤ 0 curvature.
- every edge has 0 curvature,
- every face with more than one external edge has \leq 0 curvature.

Consequence

 \Longrightarrow All the positive curvature is on faces touching the boundary once.

Facts:

- All boundaries of diagrams have a permitted diagram as proof.
- The total positive curvature $\leq n$ (boundary length).
- Let F := #internal faces, then

$$1 < n - F \cdot \varepsilon \implies F < \varepsilon^{-1} \cdot n$$

Tom — and officers in general — want to redistribute the curvature, such that for all permitted diagrams after redistribution

- every internal face has $< -\varepsilon$ curvature (for some explicit $\varepsilon > 0$),
- every vertex has \leq 0 curvature.
- every edge has 0 curvature,
- every face with more than one external edge has \leq 0 curvature.

Consequence

 \Longrightarrow All the positive curvature is on faces touching the boundary once.

Facts:

- All boundaries of diagrams have a permitted diagram as proof.
- The total positive curvature $\leq n$ (boundary length).
- Let F := #internal faces, then

 $1 < n - F \cdot \varepsilon \implies F < \varepsilon^{-1} \cdot n \implies$ hyperbolic

Max Neunhöffer (University of St Andrews) Generalisations of Small Cancellation Theory

Lemma (Goes up and stays up)

If $S \ge 0$ then there is a $j \in L$ such that for all $i \in \mathbb{N}$ the partial sum $s_{j,i} := \sum_{m=0}^{i-1} a_{\pi_L(j+m)} \ge 0.$

Lemma (Goes up and stays up)

If $S \ge 0$ then there is a $j \in L$ such that for all $i \in \mathbb{N}$ the partial sum

$$s_{j,i}:=\sum_{m=0}^{\infty}a_{\pi_L(j+m)}\geq 0.$$

i	1	2	3	4	5	6	7
ai	2	-3	4	1	-5	3	2
s _{1,i}	2	-1	3	4	-1	2	4
s _{6,i}	3	5	7	4	8	9	4

Lemma (Goes up and stays up)

If $S \ge 0$ then there is a $j \in L$ such that for all $i \in \mathbb{N}$ the partial sum

$$s_{j,i}:=\sum_{m=0}^{\infty}a_{\pi_L(j+m)}\geq 0.$$

i	1	2	3	4	5	6	7
ai	2	-3	4	1	-5	3	2
s _{1,i}	2	-1	3	4	-1	2	4
S 6, <i>i</i>	3	5	7	4	8	9	4

Corollary

Assume that there are $k \in \mathbb{N}$ and $\varepsilon \ge 0$ such that for all $j \in L$ there is an $i \le k$ with $s_{j,i} < -\varepsilon$, then $S < -\varepsilon \cdot \ell/k$.

Sunflower

To show that every internal face has curvature $< -\varepsilon$:

Use Goes Up and Stays Up on $\frac{L_1+L_2}{2L} - c$.

Poppy

Poppy

To show that every internal vertex has curvature \leq 0:

Use Goes Up and Stays Up on $c + \frac{1-v/2}{v} = c + \frac{2-v}{v}$.

Poppy

Poppy

To show that every internal vertex has curvature \leq 0:

Use Goes Up and Stays Up on $c + \frac{1-v/2}{v} = c + \frac{2-v}{v}$. Do valency v = 3 first, if nothing found, increase v.

Poppy

Poppy

To show that every internal vertex has curvature \leq 0:

Use Goes Up and Stays Up on $c + \frac{1-\nu/2}{\nu} = c + \frac{2-\nu}{\nu}$.

Do valency v = 3 first, if nothing found, increase v.

This terminates: higher valencies tend to be negatively curved anyway.

What have we achieved?

What have we achieved?

If we did not find any bad sunflower or poppy, we have

• determined an explicit ε ,

What have we achieved?

- determined an explicit ε ,
- proved hyperbolicity, and

What have we achieved?

- determined an explicit ε ,
- proved hyperbolicity, and
- can in principle solve the diagram boundary problem.

What have we achieved?

- determined an explicit ε ,
- proved hyperbolicity, and
- can in principle solve the diagram boundary problem.
- If we did find bad sunflowers or poppy, we can still
 - improve our choices for the corner values (leads to difficult optimisation/linear program problems),

What have we achieved?

- determined an explicit ε,
- proved hyperbolicity, and
- can in principle solve the diagram boundary problem.
- If we did find bad sunflowers or poppy, we can still
 - improve our choices for the corner values (leads to difficult optimisation/linear program problems),
 - forbid more diagrams (if possible) (need to show that every boundary is proved by a permitted one),

What have we achieved?

- determined an explicit ε,
- proved hyperbolicity, and
- can in principle solve the diagram boundary problem.
- If we did find bad sunflowers or poppy, we can still
 - improve our choices for the corner values (leads to difficult optimisation/linear program problems),
 - forbid more diagrams (if possible) (need to show that every boundary is proved by a permitted one),
 - or switch to a more powerful officer (with further sight or redistribution), ...

What have we achieved?

If we did not find any bad sunflower or poppy, we have

- determined an explicit ε,
- proved hyperbolicity, and
- can in principle solve the diagram boundary problem.
- If we did find bad sunflowers or poppy, we can still
 - improve our choices for the corner values (leads to difficult optimisation/linear program problems),
 - forbid more diagrams (if possible) (need to show that every boundary is proved by a permitted one),
 - or switch to a more powerful officer (with further sight or redistribution), ...

and try again.

What have we achieved?

If we did not find any bad sunflower or poppy, we have

- determined an explicit ε ,
- proved hyperbolicity, and
- can in principle solve the diagram boundary problem.
- If we did find bad sunflowers or poppy, we can still
 - improve our choices for the corner values (leads to difficult optimisation/linear program problems),
 - forbid more diagrams (if possible) (need to show that every boundary is proved by a permitted one),
 - or switch to a more powerful officer (with further sight or redistribution), ...

and try again. If $\langle S, X; R \rangle$ is not hyperbolic, this will not work.