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Edges are pairs of directed edges which are labelled by 2 letters each.
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Formalisation of diagrams
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Pt E F V
1 10 2 12
2 7 3 10
3 4 4 7
4 3 5 4
5 6 6 3
6 5 7 6
7 2 8 5
8 9 9 2
9 8 10 9

10 1 11 8
11 12 1 1
12 11 12 11

{connected planar maps}/ ∼ is in bijection with

{(E ,F ,V ) ∈ S3
n | EFV = 1, 〈E ,F 〉 is transitive,

#cycles of E ,F and V is n + 2,
E is a fixed-point free involution}/ ∼
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The rules of the game

Definition (Pongos)

A pongo is a set A with a subset A+ ⊂ A, such that A0 := A∪̇{0} is a
semigroup with 0 and:

if xy ∈ A+ for x , y ∈ A, then yx ∈ A+.

The elements in A+ are called acceptors.

Lemma (Cyclicity)
Let A be a pongo, if a1a2 · · · ak ∈ A+, then all rotations
aiai+1 · · · aka1a2 · · · ai−1 ∈ A+.

The V -cycle (E-cycle) labels are from a pongo A (resp. B).
A V -cycle (E-cycle) is valid, if the product of its labels is an acceptor.

Definition (Japanese)
A pongo A is called Japanese, if for every a ∈ A there is a unique
b ∈ A with ab ∈ A+.
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The Problems

Let A and B be two pongos.

Definition (Set of relators)
A set of relators R is a finite set of cyclic words in A× B.

Problem (Diagram boundary problem)

Devise (algorithmically) a procedure that decides for any cyclic word w
in A× B, whether or not there is a diagram such that

every internal F -cycle is labelled by a relator, and
the external F -cycle is labelled by w.

Such a diagram is called a diagram proving w.

Problem (Isoperimetric inequality)
Find and prove (algorithmically) a function f : N→ N, such that for
every cyclic word w ∈ A× B of length ` that is proved by a diagram,
there is one proving w with at most f (`) internal F -cycles.

If f is linear, we call (A,B,R) hyperbolic.
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The Applications

This can be applied

to solve the word problem in quotients of the free group,

to solve the word problem in quotients of the modular group,

to decide if w can be rewritten to w ′ using a given rewrite system,

to solve the word problem in cancellative monoids

to solve jigsaw-puzzles in which you can use arbitrarily many
copies of each piece,

etc. ???

You only have to chose the right pongo!
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The Methods: curvature . . .

Combinatorical curvature: We endow
each V -cycle with +1 unit of curvature,
each E-cycle with −1 unit of curvature and
each F -cycle with +1 unit of curvature.

−1−1

+1

+1 −1 +1

+1

−1 +1

−1 +1

+1

−1
+1

−1

+1

1− 4 · 1
2 + 4 · 1

4 = 0 1− 3 · 1
2 + 3 · 1

5 = 1
10

locally flat locally positively curved

Idea
Analyse curvature locally for all possible diagrams (“instantiation”).
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The Methods: curvature redistribution

Idea (Curvature redistribution)
We redistribute the curvature locally in a conservative way.

Purpose: To smear it out locally.

Lemma (Euler’s formula)
In a planar map we have: #V +#E +#F = n + 2 and thus
#V −#E +#F = 2
(number of V -, E- and F-cycles, including the external one).
Thus: The total sum of our combinatorial curvature is always +2.

If the local curvature (after redistribution) is negative in the interior,
there must be some positively curved region near the boundary,
we can disjoin positively curved cases of boundary regions,
there are no spheres, and
we can derive an upper bound for the number of F -cycles in terms
of the boundary length.
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If the local curvature (after redistribution) is negative in the interior,
there must be some positively curved region near the boundary,
we can disjoin positively curved cases of boundary regions,
there are no spheres, and
we can derive an upper bound for the number of F -cycles in terms
of the boundary length.

Max Neunhöffer (University of St Andrews) Generalisations of Small Cancellation Theory 10 December 2011 8 / 8


	The toys: diagrams
	Formalisation of diagrams
	The rules of the game
	The Problems
	The Applications
	The Methods: curvature …
	The Methods: curvature redistribution

