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The toys: diagrams
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The toys: diagrams

Edges are pairs of directed edges which are labelled by 2 letters each.
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Formalisation of diagrams

PRI EF [V
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Formalisation of diagrams

Pt| E| F |V
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{connected planar maps}/ ~ is in bijection with
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{connected planar maps}/ ~ is in bijection with

{(E,F,V)e S | EFV =1,(E,F) is transitive,
#cyclesof E,Fand Visn+ 2,
E is a fixed-point free involution}/ ~
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The rules of the game

Definition (Pongos)

A pongo is a set A with a subset A C A, such that Ay := AU{0} is a
semigroup with 0 and:

if xy € Ay for x,y € A, then yx € A;.

The elements in A, are called acceptors.
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Lemma (Cyclicity)

Let A be a pongo, ifajas - - - ax € Ay, then all rotations
aj@j1 a1 d- - aj—1 € Ay.
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The V-cycle (E-cycle) labels are from a pongo A (resp. B).
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The rules of the game

Definition (Pongos)

A pongo is a set A with a subset A C A, such that Ay := AU{0} is a
semigroup with 0 and:

if xy € Ay for x,y € A, then yx € A;.

The elements in A, are called acceptors.

.

Lemma (Cyclicity)

Let A be a pongo, ifajas - - - ax € Ay, then all rotations
aj@j1 a1 d- - aj—1 € Ay.

A\

The V-cycle (E-cycle) labels are from a pongo A (resp. B).
A V-cycle (E-cycle) is valid, if the product of its labels is an acceptor.

Definition (Japanese)

A pongo A is called Japanese, if for every a € A there is a unique
be Awithab e A,.
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Let A and B be two pongos.

Definition (Set of relators)
A set of relators R is a finite set of cyclic words in A x B.
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The Problems

Let A and B be two pongos and R a set of relators.

Definition (Set of relators)
A set of relators R is a finite set of cyclic words in A x B.

Problem (Diagram boundary problem)

Devise (algorithmically) a procedure that decides for any cyclic word w
in A x B, whether or not there is a diagram such that

@ every internal F-cycle is labelled by a relator, and
@ the external F-cycle is labelled by w.
Such a diagram is called a diagram proving w.

A
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Definition (Set of relators)
A set of relators R is a finite set of cyclic words in A x B.
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Devise (algorithmically) a procedure that decides for any cyclic word w
in A x B, whether or not there is a diagram such that

@ every internal F-cycle is labelled by a relator, and
@ the external F-cycle is labelled by w.
Such a diagram is called a diagram proving w.

Problem (Isoperimetric inequality)

Find and prove (algorithmically) a function f : N — N, such that for
every cyclic word w € A x B of length ¢ that is proved by a diagram,
there is one proving w with at most f(¢) internal F-cycles.
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in A x B, whether or not there is a diagram such that

@ every internal F-cycle is labelled by a relator, and
@ the external F-cycle is labelled by w.
Such a diagram is called a diagram proving w.

Problem (Isoperimetric inequality)

Find and prove (algorithmically) a function f : N — N, such that for
every cyclic word w € A x B of length ¢ that is proved by a diagram,
there is one proving w with at most f(¢) internal F-cycles.

If f is linear, we call (A, B, R) hyperbolic.
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The Applications

This can be applied
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@ to solve jigsaw-puzzles in which you can use arbitrarily many
copies of each piece,
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The Applications

This can be applied

@ to solve the word problem in quotients of the free group,

@ to solve the word problem in quotients of the modular group,

@ to decide if w can be rewritten to w’ using a given rewrite system,
@ to solve the word problem in cancellative monoids

@ to solve jigsaw-puzzles in which you can use arbitrarily many
copies of each piece,

@ etc. 777

You only have to chose the right pongo!
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The Methods: curvature . . .
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The Methods: curvature . . .

Combinatorical curvature: We endow
@ each V-cycle with +1 unit of curvature,
@ each E-cycle with —1 unit of curvature and
@ each F-cycle with +1 unit of curvature.
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The Methods: curvature . . .

Combinatorical curvature: We endow
@ each V-cycle with +1 unit of curvature,
@ each E-cycle with —1 unit of curvature and
@ each F-cycle with +1 unit of curvature.

+1 -~ +1

-1 +1 -1

+1 -1 +1
1 1 _ 1 1 _ 1
1-4.54+4.1=0 1-3-7+3-2 =15
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The Methods: curvature . . .

Combinatorical curvature: We endow

@ each V-cycle with +1 unit of curvature,
@ each E-cycle with —1 unit of curvature and
@ each F-cycle with +1 unit of curvature.

+1

+1

+1

+1

1 1
1-4.54+4.1
locally flat
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The Methods: curvature . . .

Combinatorical curvature: We endow
@ each V-cycle with +1 unit of curvature,
@ each E-cycle with —1 unit of curvature and
@ each F-cycle with +1 unit of curvature.

+1 -~ +1
-1 +1 -1
+1 -1 +1
1 1 1 1 1
locally flat locally positively curved

Analyse curvature locally for all possible diagrams (“instantiation”).
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The Methods: curvature redistribution

Idea (Curvature redistribution)
We redistribute the curvature locally in a conservative way.
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Idea (Curvature redistribution)

We redistribute the curvature locally in a conservative way.
Purpose: To smear it out locally.

Lemma (Euler’s formula)

In a planar map we have: #V + #E + #F = n+ 2 and thus
#V —H#E +#F =2
(number of V-, E- and F-cycles, including the external one).
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If the local curvature (after redistribution) is negative in the interior,
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The Methods: curvature redistribution

Idea (Curvature redistribution)

We redistribute the curvature locally in a conservative way.
Purpose: To smear it out locally.

Lemma (Euler’s formula)

In a planar map we have: #V + #E + #F = n+ 2 and thus

#V —H#E +#F =2

(number of V-, E- and F-cycles, including the external one).
Thus: The total sum of our combinatorial curvature is always +2.

If the local curvature (after redistribution) is negative in the interior,
@ there must be some positively curved region near the boundary,
@ we can disjoin positively curved cases of boundary regions,

@ there are no spheres, and

@ we can derive an upper bound for the number of F-cycles in terms
of the boundary length.
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