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Orbit enumeration — the basic algorithm

Problem (Orbit enumeration)
Let a : X ×G→ X and x0 ∈ X. Determine the smallest subset O ⊆ X,
such that x0 ∈ O and: for all x ∈ O and all g ∈ G we have a(x ,g) ∈ O.

O is called the G-orbit of x0, denoted by x0G. We write x · g for a(x ,g).
Often, G is a generating system of a (semi-)group.

Basic Orbit Algorithm
Input: x0 ∈ X ,g1,g2, . . . ,gk : X → X
T := {x0} (a hash table); O := [x0] (a list); i := 1
while i ≤ Length(O) do

for j from 1 to k do
y := O[i] · gj
if y /∈ T then

Add y to T
Add y to the end of O

i := i + 1
return O (containing the orbit of x0)
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Orbit enumeration — our parallel algorithm An overview over the model

Hash server Hash server Hash server

Worker Worker Worker Worker

analogously

results

results
of points

a chunk

A worker
gets a chunk of points from some hash server,
applies all generators to all points in the chunk,
and sends all results to the responsible hash server.
A distribution function regulates who is responsible.

A hash server
stores and recognises points, and
keeps track of work to do.
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Orbit enumeration — our parallel algorithm Pseudo code for a worker

A worker
Input:

the set G and the action function a : X ×G→ X ,
the number h of hash servers and
a distribution hash function f : X → {1, . . . ,h}

while TRUE do
get a chunk C of points
R := a list of length h of empty lists
for all x ∈ C do

for all g ∈ G do
y := x · g
append y to R[f (y)]

for all j ∈ {1, . . . ,h} do
schedule sending R[j] to hash server j
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Orbit enumeration — our parallel algorithm Pseudo code for a hash server

A hash server
Input: a chunk size s
initialise a hash table T and a work queue Q
while TRUE do

get a chunk C of points (usually from a worker)
for all x ∈ C do

if x /∈ T then
add x to T and append it to Q
if at least s points in Q are unscheduled then

schedule a chunk of size s points
if there are unscheduled points in Q then

schedule a chunk of size < s points
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Orbit enumeration — our parallel algorithm Some more comments

All points are immutable and read only objects.

We have ignored the termination condition here.

The same basic model can be used in shared memory and in
distributed memory.

In the shared memory implementation we use channels to
communicate chunks of points.

For more details see
hpcgap/demo/parorbit/parallelorbit2.g

Vladimir will talk about the distributed memory implementation.
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Analysis of the communication

We estimate the amount of communication:
Every point has to be sent to one worker.

Every point produces |G| results, which have to be sent back to
some hash server.
If G generates a group and a is a group action,
then every point in the orbit is found equally many times.
=⇒ Need to transfer (|G|+ 1) · |O| points.
We assume that the distribution function works well.

We use queues everywhere to avoid latency:
Each hash server has an input queue.
There is a global work queue to send work to the workers.
We use one more channel for termination and result collecting.

In general: Never use blocking calls for communication!
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The startup phase

Problem (Filling the queues)

The main difficulty is to fill the queues!

The whole process starts by feeding x0 to some hash server.
At first only few workers have work.
However, in the beginning every point produces up to |G| new points.
If the growth of the number of unprocessed points is not fast enough,
the workers starve. If we avoid this problem, we get:

Theorem (A priori runtime estimate)
Let w be the number of workers and h be the number of hash servers.
Then the runtime of our algorithm is approximately

max
{
|G| · |O|

wA
,
|G| · |O|

hL

}
,

where A is the number of ACT operations a worker can do per sec. and
L is the number of LOOKUP operations a hash server can do per sec.
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Results and timings (shared memory)
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