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All of this is joint work with Cheryl Praeger

and is based on earlier ideas of

Peter Neumann and Cheryl Praeger.
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An example

Baby Monster group B = 〈a,b〉 with a,b ∈ F4370×4370
2

Consider M := a + b + ab ∈ F4370×4370
2

Computing

the characteristic polynomial χM of M takes 8.5s
the minimal polynomial µM of M takes 9600s

(times in GAP, other systems behave similarly).

Questions
What is going on here?

What can we do about this?

Is this a typical example?
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Order polynomials

Definition (Order polynomial)
F field, A f.d. F-algebra, V ∈ mod-A, v ∈ V , M ∈ A.
Then the order polynomial q := ordM(v) ∈ F[x ] is the
monic polynomial of least degree such that v · q(M) = 0.

Definition (Relative order polynomial)
If additionally W < V is M-invariant, then we call
ordM(v + W ) the relative order polynomial of
v + W ∈ V/W .

Lemma (Generator of annihilator)
The order polynomial ordM(v) divides every polynomial
q ∈ F[x ] with v · q(M) = 0.
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The standard approach

What is going on here?
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The characteristic polynomial
Let v1, . . . , vi ∈ V , and Vi := 〈v1, . . . , vi〉M the F[M]-span.
Find smallest d1 ∈ N such that (v1, v1M, v1M2, . . . , v1Md1)
is linearly dependent. If

v1Md1 =

d1−1∑
i=0

aiv1M i then ordM(v1) = xd1 −
d1−1∑
i=0

aix i .

Choose some v2 ∈ V \ 〈v1〉M and find smallest d2 ∈ N,
such that (v1, v1M, . . . , v1Md1−1, v2, v2M, . . . , v2Md2) is
linearly dependent. If

v2Md2 =

d1−1∑
i=0

biv1M i +

d2−1∑
i=0

civ2M i then

ordM(v + 〈v1〉M) = xd2 −
∑
i=0

cix i .

Going on like this we find an F-basis Y of V :

Y := (v1, v1M, . . . , vd1−1
1 , . . . , vk , vkM, . . . , vkMdk−1

k ).
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The matrix Y ·M · Y−1
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*

Block lower-triangular
with companion matrices along diagonal
some sparse garbage below the diagonal
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The minimal polynomial

→ compute the absolute order polynomials ordM(vi)
instead the relative ones ordM(vi + 〈v1, . . . , vi−1〉)M .

Lemma (Minimal polynomial)
If V = 〈v1, . . . , vk 〉M then

µM = lcm(ordM(v1), . . . ,ordM(vk )).

Problem:
dimF(Vi)− dimF(Vi−1) might be small
even if dimF(Vi) is big.

(set Vi := 〈v1, . . . , vi〉M )

Characteristic polynomial: asymptotically ≤ 5n3 field ops.
Minimal polynomial: asymptotically ∼ n4 field ops.
(both worst case analysis)
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A Monte Carlo approach

What can we do about it?



Computing
Minimal

Polynomials

Max Neunhöffer

The Problem
An example

Order polynomials

The standard
approach
The characteristic
polynomial

The minimal polynomial

A Monte Carlo
approach
Computing order
polynomials

A Monte Carlo algorithm

Back to the example

Two lemmas

Lemma (Order polynomials in cyclic spaces)
Let W := 〈v〉M < V be a cyclic subspace and
p := ordM(v) be the order polynomial of v . Let
w = v · q(M) ∈W with deg(q) < deg(p). Then

ordM(w) =
p

gcd(p,q)
.

Lemma (Relative and absolute order polynomials)
Let W < V be M-invariant and v ∈ V . If
q := ordM(v + W ) is the relative order polynomial of v ,
then v · q(M) ∈W and

ordM(v) = q · ordM(v · q(M)).
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Computing order polynomials

We now use the filtration

0 = V0 < V1 < V2 < · · · < Vk = V .

Start with v ∈ Vj for some 1 ≤ j ≤ k . Then
compute qj := ordM(v + Vj−1) in Vj/Vj−1
(gcd computation with ordM(vj + Vj−1)),
evaluate vj · qj(M) ∈ Vj−1,
proceed inductively,
take product

∏j
i=1 qj .

→ use sparseness of YMY−1 by “thinking in basis Y ”

Needs ≤ (j + 8) ·D2 + j ·D field ops. where D := dimF(Vj).
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A Monte Carlo algorithm
Proposition
Let F = Fq, randomise v1, . . . , vu ∈ V independently and
uniformly distributed, χM =

∏t
i=1 qei

i . Then:

Prob (lcm(ordM(v1), . . . ,ordM(vu)) = µM)

is at least
t∏

i=1

(1− q−u deg(qi )).

Algorithm: Input M, 0 < ε < 1/2
Compute χM , Y , ordM(vi + Vi−1) for 1 ≤ i ≤ k
Determine least u, such that probability > 1− ε
Compute ordM(v1), . . . ,ordM(vu)

Return least common multiple

Needs asymptotically ≤ 5n3 + FACTORISATION(n) field
ops.
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Back to the example
Baby Monster group B = 〈a,b〉 with a,b ∈ F4370×4370

2
Consider M := a + b + ab ∈ F4370×4370

2

The new algorithm needs
13.3 s to compute µM with ε = 1/100
30.0 s with deterministic verification afterwards

How typical is this example?

Irreducible factors of χM :
deg 1 1 2 4 6 88 197 854 934
χM 2 2277 4 1 1 1 1 1 1
µM 1 5 4 1 1 1 1 1 1

What we see is
typical behaviour for such matrices,
most matrices are not of this type,
however, such matrices might occur in applications.
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