Max Neunhöffer

The Problem An example Order polynomials

The standard approach The characteristic polynomial The minimal polynomia

A Monte Carlo approach Computing order polynomials A Monte Carlo algorithr Back to the example

Computing Minimal Polynomials

Max Neunhöffer

Lehrstuhl D für Mathematik RWTH Aachen

Oberwolfach in July 2006

Max Neunhöffer

The Problem An example Order polynomials

The standard approach The characteristic polynomial The minimal polynomial

A Monte Carlo approach Computing order polynomials A Monte Carlo algorithm Back to the example All of this is joint work with Cheryl Praeger

and is based on earlier ideas of

Peter Neumann and Cheryl Praeger.

Max Neunhöffer

The Problem

An example Order polynomia

The standard approach The characteristic polynomial

The minimal polynomial

A Monte Carlo approach Computing order polynomials A Monte Carlo algorith Back to the example

The Problem

Max Neunhöffer

The Problem An example Order polynomials

The standard approach The characteristic polynomial The minimal polynomia

A Monte Carlo approach Computing order polynomials A Monte Carlo algorithm Back to the example

An example

Baby Monster group $B = \langle a, b \rangle$ with $a, b \in \mathbb{F}_2^{4370 \times 4370}$ Consider $M := a + b + ab \in \mathbb{F}_2^{4370 \times 4370}$

Computing

the characteristic polynomial χ_M of *M* takes 8.5*s*the minimal polynomial μ_M of *M* takes 9600*s*(times in GAP, other systems behave similarly).

Questions

What is going on here?

What can we do about this?

Is this a typical example?

Max Neunhöffer

The Problem An example Order polynomials

The standard approach The characteristic polynomial The minimal polynomia

A Monte Carlo approach Computing order polynomials A Monte Carlo algorithm Back to the example

Order polynomials

Definition (Order polynomial)

F field, A f.d. F-algebra, $V \in \text{mod-}A$, $v \in V$, $M \in A$. Then the order polynomial $q := \text{ord}_M(v) \in \mathbb{F}[x]$ is the monic polynomial of least degree such that $v \cdot q(M) = 0$.

Definition (Relative order polynomial)

If additionally W < V is *M*-invariant, then we call $\operatorname{ord}_M(v + W)$ the relative order polynomial of $v + W \in V/W$.

Lemma (Generator of annihilator)

The order polynomial $\operatorname{ord}_M(v)$ divides every polynomial $q \in \mathbb{F}[x]$ with $v \cdot q(M) = 0$.

Max Neunhöffer

The Problem An example Order polynomials

The standard approach

The characteristic polynomial The minimal polynomial

A Monte Carlo approach Computing order polynomials A Monte Carlo algorithm Back to the example

The standard approach

What is going on here?

Max Neunhöffer

The Problem An example Order polynomials

The standard approach The characteristic polynomial The minimal polynomial A Monte Carlo

Computing order polynomials A Monte Carlo algorithm Back to the example

The characteristic polynomial

Let $v_1, \ldots, v_i \in V$, and $V_i := \langle v_1, \ldots, v_i \rangle_M$ the $\mathbb{F}[M]$ -span. Find smallest $d_1 \in \mathbb{N}$ such that $(v_1, v_1 M, v_1 M^2, \ldots, v_1 M^{d_1})$ is linearly dependent. If

$$v_1 M^{d_1} = \sum_{i=0}^{d_1-1} a_i v_1 M^i$$
 then $\operatorname{ord}_M(v_1) = x^{d_1} - \sum_{i=0}^{d_1-1} a_i x^i$.

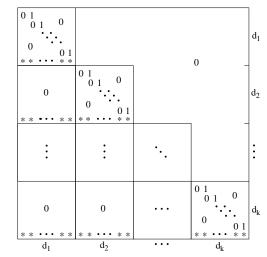
Choose some $v_2 \in V \setminus \langle v_1 \rangle_M$ and find smallest $d_2 \in \mathbb{N}$, such that $(v_1, v_1 M, \dots, v_1 M^{d_1-1}, v_2, v_2 M, \dots, v_2 M^{d_2})$ is linearly dependent. If

$$v_2 M^{d_2} = \sum_{i=0}^{d_1-1} b_i v_1 M^i + \sum_{i=0}^{d_2-1} c_i v_2 M^i$$
 then
 $\operatorname{ord}_M(v + \langle v_1 \rangle_M) = x^{d_2} - \sum_{i=0} c_i x^i.$

Going on like this we find an \mathbb{F} -basis *Y* of *V*:

$$Y := (v_1, v_1 M, \ldots, v_1^{d_1-1}, \ldots, v_k, v_k M, \ldots, v_k M_k^{d_k-1}).$$

The matrix $Y \cdot M \cdot Y^{-1}$



- Block lower-triangular
- with companion matrices along diagonal
- some sparse garbage below the diagonal

Max Neunhöffer

The Problem An example Order polynomials

The standard approach The characteristic polynomial The minimal polynomial

A Monte Carlo approach Computing order polynomials A Monte Carlo algorithm Back to the example

The minimal polynomial

→ compute the absolute order polynomials $\operatorname{ord}_M(v_i)$ instead the relative ones $\operatorname{ord}_M(v_i + \langle v_1, \dots, v_{i-1} \rangle)_M$.

Lemma (Minimal polynomial)

If $V = \langle v_1, \dots, v_k \rangle_M$ then $\mu_M = \operatorname{lcm}(\operatorname{ord}_M(v_1), \dots, \operatorname{ord}_M(v_k)).$

Problem:

- dim_{\mathbb{F}}(V_i) dim_{\mathbb{F}}(V_{i-1}) might be small
- even if dim_{\mathbb{F}}(V_i) is big.

(set $V_i := \langle v_1, \ldots, v_i \rangle_M$)

Characteristic polynomial: asymptotically $\leq 5n^3$ field ops. Minimal polynomial: asymptotically $\sim n^4$ field ops. (both worst case analysis)

Max Neunhöffer

The Problem An example Order polynomials

The standard approach The characteristic

polynomial The minimal polynomial

A Monte Carlo approach

Computing order polynomials A Monte Carlo algorithm Back to the example

A Monte Carlo approach

What can we do about it?

Max Neunhöffer

The Problem An example Order polynomials

The standard approach

The characteristic polynomial The minimal polynomial

A Monte Carlo approach

Computing order polynomials A Monte Carlo algorithm

Two lemmas

Lemma (Order polynomials in cyclic spaces)

Let $W := \langle v \rangle_M < V$ be a cyclic subspace and $p := \operatorname{ord}_M(v)$ be the order polynomial of v. Let $w = v \cdot q(M) \in W$ with deg $(q) < \operatorname{deg}(p)$. Then

$$\operatorname{ord}_M(w) = \frac{p}{\operatorname{gcd}(p,q)}.$$

Lemma (Relative and absolute order polynomials)

Let W < V be *M*-invariant and $v \in V$. If $q := \operatorname{ord}_M(v + W)$ is the relative order polynomial of v, then $v \cdot q(M) \in W$ and

 $\operatorname{ord}_M(v) = q \cdot \operatorname{ord}_M(v \cdot q(M)).$

Max Neunhöffer

The Problem An example Order polynomials

The standard approach The characteristic polynomial

The minimal polynomial

A Monte Carlo approach

Computing order polynomials A Monte Carlo algorith

Back to the example

Computing order polynomials

We now use the filtration

$$0 = V_0 < V_1 < V_2 < \cdots < V_k = V_1$$

Start with $v \in V_j$ for some $1 \le j \le k$. Then

- compute $q_j := \operatorname{ord}_M(v + V_{j-1})$ in V_j/V_{j-1} (gcd computation with $\operatorname{ord}_M(v_j + V_{j-1})$),
- evaluate $v_j \cdot q_j(M) \in V_{j-1}$,
- proceed inductively,
- take product $\prod_{i=1}^{j} q_i$.

→ use sparseness of YMY^{-1} by "thinking in basis Y" Needs $\leq (j+8) \cdot D^2 + j \cdot D$ field ops. where $D := \dim_{\mathbb{F}}(V_j)$.

Max Neunhöffer

The Problem An example Order polynomials

The standard approach The characteristic polynomial

The minimal polynomial

A Monte Carlo approach Computing order polynomials A Monte Carlo algorithm Back to the example

A Monte Carlo algorithm

Proposition

Let $\mathbb{F} = \mathbb{F}_q$, randomise $v_1, \ldots, v_u \in V$ independently and uniformly distributed, $\chi_M = \prod_{i=1}^t q_i^{e_i}$. Then:

 $\mathsf{Prob}\left(\mathsf{lcm}(\mathsf{ord}_M(v_1),\ldots,\mathsf{ord}_M(v_u))=\mu_M\right)$

is at least $\prod_{i=1}^{t} (1 - q^{-u \deg(q_i)}).$

Algorithm: Input *M*, $0 < \epsilon < 1/2$

- Compute χ_M , Y, $\operatorname{ord}_M(v_i + V_{i-1})$ for $1 \le i \le k$
- Determine least u, such that probability $> 1 \epsilon$
- Compute $\operatorname{ord}_M(v_1), \ldots, \operatorname{ord}_M(v_u)$
- Return least common multiple

Needs asymptotically $\leq 5n^3 + FACTORISATION(n)$ field ops.

Max Neunhöffer

The Problem An example Order polynomials

The standard approach

The characteristic polynomial The minimal polynomial

A Monte Carlo approach Computing order polynomials

Back to the example

Back to the example

Baby Monster group $B = \langle a, b \rangle$ with $a, b \in \mathbb{F}_2^{4370 \times 4370}$ Consider $M := a + b + ab \in \mathbb{F}_2^{4370 \times 4370}$

The new algorithm needs

• 13.3 s to compute μ_M with $\epsilon = 1/100$

30.0 s with deterministic verification afterwards

How typical is this example?

Irreducible factors of χ_M :

deg	1	1	2	4	6	88	197	854	934
χ_{M}	2	2277	4	1	1	1	1	1	1
μ_M	1	5	4	1	1	1	1	1	1

What we see is

- typical behaviour for such matrices,
- most matrices are not of this type,
- however, such matrices might occur in applications.