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Let W := S, and S its Coxeter generators.
Let R be a commutative ring, and v € R*.

The lwahori-Hecke algebra #w (R, v) is the R-free
R-algebra with R-basis (Ty)wew satisfying

TwTw = Tow if [(ww') = I(w) + I(w),
(Te = V) (Ts+ vy foraeS,

where [ is the length function on W.
A ring homomorphism ¢ : R — R’ induces another one:
Hw (R, v) — Hw (R, ¢(v))

Set A:=Z[v,v ]
FHw(A, v) is called the generic Hecke algebra.
@ : A— F, is called a specialisation.
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Let A(n, r) := {compositions of r with at most n parts}.
For A € A(n, r) let W, be the parabolic subgroup.

We set g := v? and

8q(n,r) = End;{( &y xﬁe),

reA(n,r)

where x, = Y. VIWT, e #.

WEW)L
For A, u € A(n, r) let D, , be the set of distinguished
W, -W,-double coset representatives.

Let M(n, r) :={(,w, ) | A, w € A(n,r)and w € D; . }.
Write fora= (A, w, ) € M(n, r):

ro(@:=A and co(@:=u and o(a) := 2z,

where z is the longest element in W, wWW,,.
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(Tw)wew is an A-basis of # := Hw(A, v).
In 1979 Kazhdan and Lusztig defined a basis (Cy)wew:

y=w

where p, € Z[v~'] and pw,» = 1 and < is the
Bruhat-Chevalley order and = : #¢ — #¢ is the involution

vi=v' and ) a,T,:=) a7,
weW weW

The py » are the famous Kazhdan-Lusztig polynomials
and (Cy)wew the Kazhdan-Lusztig basis.
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44(n, r) has a standard basis (¢;",)i.w.yemn.r)-
Recall

Sq(n. 1) :=Endy | € x|,
reA(n,r)
we have ¢;", € Homy (X, H, X, ).

Using (Cw)wew, Du defined a basis (03) aemn,r) With
similar properties.

We call it the Du-Kazhdan-Lusztig basis of 84(n, r).

What are these interesting properties?
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Back to #, let (gx,y.z)x,y.zew be the structure constants:

Cx ' Cy = Z gx,y,zCz

zeW

We have gy y.» € Z[v, v~], the coefficients are > 0!

Define z <, y if there is x € W with gy > # 0, that is:
C, occurs in some Cy - Cy, as above.

<. is a preorder, this defines an equivalence relation ~,
the equivalence classes are called left cells.

For a left cell A and z € A, define
Hon = (Cw |W<=,2), and H_, :=(Cy | W<, 2),

and set LC'Y := #_, /#_,, the left cell module of A with
basis (Cy + H-A)wea-

Analogously: z <g x if there is y € W with gy, » # 0.
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Oa - Op = Z fab.c - 0

ceM(n,r)

Lemma

We have fyp . = 0 unless

co(a) = ro(b) andro(c) = ro(a) and co(c) = co(b), and

fabe ="' - g(o(a),0(b). o (0))

in this case for some 0 # h,, € Z[v, v7'].

Define ¢ <, bifthere is a € M(n, r) with f;p ¢ # 0.

Define ~/, left cells, 8-, 8-, and LC"Y exactly as for
Hecke-algebras.
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One of the wonders of the Kazhdan-Lusztig basis is:

Theorem (Kazhdan-Lusztig, Du)

For the field K := Q(v) and the extensions of scalars
K#Hw(A, v) = Hw(K, v) and K84(n, r) we have:

KLC™) js a simple module for every left cell A.

This gives filtrations of K# and K& by simple modules.

v

Theorem (Dipper-James)

Hw(K, v) and K84(n, r) are semisimple.

In fact, #w(FF, u) is semisimple unless u is an e-th root of
unity with e < r (and likewise for 84(n, )).
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Let ™
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t(h) := Z c
xelm(Hw(K.v)
for some elements 0 # ¢, € K.
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Then t is a symmetrising trace form on Hw (K, v), i.e.:
@ (h, ) — =(hR) is bilinear and
@ non-degenerate and
@ symmetric: T(hh') = (K h) for all h, ' € #.
Thus, for every basis (By)wew there is a dual basis
(B;,))wew with
©(B,B)) =8y.w.

We do the same for K'84(n, r) and use (8,) acm(n.r, Note:

lth= " Bab, thenp,=r(h -6y forallbe Mn.n),
aeM(n,r)

and thus fapc = 7(8,0,65) forall a b, c € M(n, r).
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Yx.y.z—1 the coefficient of gy, , at v@@.
Using the y, , .-+ Lusztig defined:
@ asubset D < W of distinguished involutions,

The asymptotic algebra

@ a semisimple A-algebra g4
(the asymptotic algebra)

@ a homomorphism @ : #y (Z[v, v~ '], v) = Ja.

(the Lusztig homomorphism).

Du defined:

@ D(n,r):={ae Mn,r)|ro(@ =co(a ando(a) € D},
@ J(n, r)a with its standard basis (ta) acmn,r),

(the asymptotic algebra)
o with identity > 1y, and

deD(n,r)

@ the Du-Lusztig hom. @ : 84(n, r) — 3(n, ) a.
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P10 If x <g y and a(x) = a(y), then x ~g y.
P13 Every left cell contains a unique element d € D.
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Max Neunhoffer

Lusztig formulates 15 “conjectures” P1 to P15:

P2 If y, ), g1 #0withd € D, then x = y .
P3 For y € W exists a unique d € D with y,-1 |, 41 # 0.
P6 Forde Dwehave d =d .
P9 If x <, y and a(x) = a(y), then x ~ y.
P10 If x <g y and a(x) = a(y), then x ~g y.
P13 Every left cell contains a unique element d € D.

These are proved for #w (A, v) if
@ W is a finite Weyl group,
@ W is an affine Weyl group,
@ W is an infinite dihedral group.
For other lwahori-Hecke algebras they are conjectures.
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We prove for $4(n, r) statements Q1 to Q15: Setting

| ve@,00),0©7") iffape#0
Yabc =1 ¢ otherwise
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bl Statements Q1 to Q15

Max Neunhoffer

We prove for $4(n, r) statements Q1 to Q15: Setting

| ve@,00),0©7") iffape#0
Yabc =1 ¢ otherwise

and @' := (u, w=', 1) fora= (, w, ), we get:

Q2 Ify,, 4 #0withd € D(n.r),thena=b".
Q3 Vae M(n,r)Jaunique d € D(n, r) with y , s+ # 0.
Q6 Ford e D(n, r) we have d = d'.
Q9 Ifa<, banda(o(a) = a(o (b)), then a ~, b.
Q10 If a<g band a(o(a)) = a(o (b)), then a~p b.
Q13 Every left cell contains a unique element d € D(n, r).

Proofs use P1 to P15 and some additional g-Schur
algebra arguments.
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t(h) = Z x(h)
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for some elements 0 # ¢, € K.
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Let A be a left cell such that LC™Y has character v and

t(h) = Z x(h)

xelr(Fw (K, v)) Cx

for some elements 0 # ¢, € K.
Then the representing matrix of h € 84(n, r) on LCV is

DY (h) = (v - h-6,))

a,beA

Use Frobenius-Schur relations for K84(n, r): Fix a, b € A,

Y. T -6 -6y) -0, = 6,6,

ceM(n,r)




g-Schur algebras

An explicit Wedderburn basis

Max Neunhoffer

Let A be a left cell such that LC™Y has character v and

t(h) = Z x (h)

xelr(Fw (K, v)) Cx

for some elements 0 # ¢, € K.
Then the representing matrix of h € 84(n, r) on LCV is

DY (h) = (v - h-6,))

abeA

Use Frobenius-Schur relations for K84(n, r): Fix a, b € A,

Y. T -6 -6y) -0, = 6,6,

ceM(n,r)

acts on LCY) as a matrix with one entry 1 and 0 elsewhere.




g-Schur algebras

Max Neunhéffer

The Players

The Equipment

Weddert basis

The Goal

An explicit Wedderburn basis Il

Theorem (Wedderburn basis (Brunat, N., 2008))
The set

B = {0;0995 |ceM(n,r,deD(nn,c~ g}
is a Wedderburn basis of K84(n, ).
Forc;'0,6y and c,'0,6Y, in B we have:

(c; 0,0) - (c:,‘ 0,0,

0 ifLC@ zLCc?
=10 ifLC?® = LCD andd #r ¢
;0,0 IfLCY =LCY andd ~g ¢

c” is the unique element withc” ~; d’ and ¢’ ~r ¢ and
such a c¢” in fact exists.




g-Schur algebras The dual baS|S Of £

Max Neunhoffer

These relations immediately imply: The dual basis 8" of

B = {65929; |ceM(n.n.deDn.n,c~ Q}

8" ={0,0; 1 ce Mn.r),d e D(n.r), c~ d}
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g-Schur algebras The dual baS|S Of £

Max Neunhoffer

These relations immediately imply: The dual basis 8" of

B = {65929; |ceM(n.n.deDn.n,c~ Q}

8" ={0,0; 1 ce Mn.r),d e D(n.r), c~ d}

\
In fact: <c§199 9;) =0,0, where ¢' ~ d" € D(n,r).
Note:
<(9§ )geM(n,r)>A = ’Sq(n’ r < (Ba

and
<!BV)A - <(9§v)geM(n,f)>A

not depending on the choice of 7!
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g-Schur algebras Pre|mages Of the tg

Max Neunhoffer

Since the formula for the Du-Lusztig homomorphism is

o= Y t(h-0,65) t, forheKsqn,n

beM(n,r)
d'ceD(n,r)
d~b

we can use Q1 to Q15 and our theorem to show:

Theorem (Preimages of the #; (Brunat, N., 2008))

Let T be an arbitrary non-degenerate symmetrising trace
form on K$4(n, r), then

®(c;'0,04) =t. forallce M(n,r),

where ¢;'6, 6y € B, thatisc ~, d € D(n, r).




g-Schur algebras

Lusztig’s homomorphism revisited

Max Neunhoffer

In view of our Wedderburn basis, we have for
A=7Z[v,v'land K = Q(v) and 4(n, rx := KJ(n, r)4:

8q(N, 1) ——— (B) g — K48q4(n, 1)

%; q)l;

8q(n, 1) —2>g(n, Na——> 9(n, Nk

since Du has shown that @ is an isomorphism after
extension of scalars to K.
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g-Schur algebras

Lusztig’s homomorphism revisited

Max Neunhoffer

In view of our Wedderburn basis, we have for
A=7Z[v,v'land K = Q(v) and 4(n, rx := KJ(n, r)4:

8q(N, 1) ——— (B) g — K48q4(n, 1)

%; q)l;

8q(n, 1) —2>g(n, Na——> 9(n, Nk

since Du has shown that @ is an isomorphism after
extension of scalars to K.

Thus, the Du-Lusztig homomorphism is the same as the
inclusion

8q(n, 1) S (B)a.

Furthermore, we get that (B) 4 is isomorphic to a
direct sum of full matrix rings over A.
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Let s:=|M(n, r)|and M = (my) € AS*® be:
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el James’ conjecture ...

Max Neunhoffer

Let s:=|M(n, r)|and M = (my) € AS*® be:
®(0a) = Z Map -ty

beM(n,r)

forall be M(n, r).
Let F, be a finite prime field, u € T, of order 2e, and

A=7Z[v,v | ————— Z[{26]

be a commutative diagram of ring homomorphisms
(oe € e ¥1cc primitive) with ¢ (V) = Zoe and ¢, (v) = u.

We want to compare the representation theory of

K84(n,r) and Q(&2e)8q(n, r) and F,84(n,r).




bl . . . in a reformulation by Geck

Max Neunhoffer

Let 9o = ¢/ o pe as above.

Theorem (Geck)

James’ conjecture for q-Schur algebras is equivalent to
the fact that for ¢ > r we have

rankqz,e) (pe(M)) = ranke, (p.(M)),

where po(M) = (pe(Map)) and ¢, = (pe(Mgp)).
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bl . . . in a reformulation by Geck

Max Neunhoffer

Let 9o = ¢/ o pe as above.

Theorem (Geck)

James’ conjecture for q-Schur algebras is equivalent to
the fact that for ¢ > r we have

rankqz,e) (pe(M)) = ranke, (p.(M)),

where po(M) = (pe(Map)) and ¢, = (pe(Mgp)).

That is, the rank of the matrix M when specialised to
Q(22¢) is the same as when specialised to F,.

By our results, M is the base change matrix between

(02)acmn.y and £={C§1999gv}’

all within K84(n, r)!
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Max Neunhoffer
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g-Schur algebras

A potential attack?

Max Neunhoffer

Let Q. = (gap) be the base change from (6,) to (6,)

6y = Z Qab- 0, forallae M(n,n),
beM(n,r)

and D be the one from 8" to 8, which is monomial, then:
D=M'.Q, M,

since M! is the base change from 8" to ;).

If, for some ¢ and ¢,, we could find a nice t, such that
@ the elements ¢, all lie in A,
@ Q, € A5*5, and

@ the number of ¢, that vanish under ¢, is equal to the
number of ¢, that vanish under ¢,,

then James’ conjecture would follow for ¢ and ¢,.
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