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Long orbits

Gunter Malle classified long orbits of quasi-simple groups:

Definition (Long orbit)

G: quasi-simple group, ρ : G → EndFq (Fd
q),

induces an action on the projective space P(Fd
q)

An orbit is called long if it has at least qd−1−1
q−1 elements.

Recently he posed the following question:

Question
Does 2.Co1 have a long orbit in its action on F24

5 ?
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The Action

2.Co1 = Aut(Λ) where Λ is the Leech lattice:
the unique 24-dimensional, even, unimodular lattice with
no vectors of norm 2.

Co1 : one of the 26 sporadic simple groups.

=⇒ 24-dimensional integral representation of 2.Co1

We consider this representation mod 5.

−→ Download two matrices in F24×24
5 from Rob’s page.
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The Size

|Co1| = 4 157 776 806 543 360 000 ≈ 4 · 1018

|P(F24
5 )| = 524−1

5−1 = 14 901 161 193 847 656 ≈ 15 · 1015

Is there an orbit of length at least

523 − 1
5− 1

= 2 980 232 238 769 531 ≈ 3 · 1015 ?

Storing a field element in 4 Bits, we would need at least

1 387 778 Gigabytes ≈ 1.4 Petabytes

of memory to simply store all elements of such an orbit.
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Standard orbit enumeration

Algorithm (Orbit enumeration)

Input: G = 〈g1, . . . , gr 〉 acting on X , x ∈ X
set l := [x ]
for z in l :

for g in [g1, . . . , gr ]:
if zg in l :

compute stabiliser element
else:

append zg to l
Output: l and generators for StabG(x)

We need to
store all points in memory,
look up points efficiently, and
compute xG and StabG(x) without knowing |G|.
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Storing U-suborbits
U < G a helper subgroup −→ archive U-suborbits!

We want:
given x ∈ X , store xU and compute |xU|
given z ∈ X , decide whether z lies in a stored xU

To this end, let ¯ : X → Y be a homomorphism of U-sets:

enumerate Y completely
choose one element in each U-orbit of Y arbitrarily
call these U-minimal
for y ∈ Y , store a uy ∈ U such that yuy is U-minimal
for U-minimal y ∈ Y , store generators of StabU(y)

call x ∈ X U-minimal, if x̄ ∈ Y is U-minimal

Algorithm
Store xU by storing all U-minimal elements in xU.
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Storing U-suborbits II

If x ∈ X is U-minimal (i.e. x̄ ∈ Y is U-minimal), then

xStabU(x̄) is the set of U-minimal elements in xU

Algorithm (Storing xU)

Input: x ∈ X
look up ux̄ and compute z := xux̄
enumerate and store zStabU(z̄)
find StabU(z) ≤ StabU(z̄) and thus |zU| = |xU|

Algorithm (Looking up z ∈ X )

Input: z ∈ X , some stored xU
look up uz̄ and compute w := zuz̄
look up w in list of stored points
z ∈ xU iff w already stored
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Storing U-suborbits II

If x ∈ X is U-minimal (i.e. x̄ ∈ Y is U-minimal), then

xStabU(x̄) is the set of U-minimal elements in xU

Algorithm (Storing xU)

Input: x ∈ X
look up ux̄ and compute z := xux̄
enumerate and store zStabU(z̄)
find StabU(z) ≤ StabU(z̄) and thus |zU| = |xU|

Algorithm (Looking up z ∈ X )

Input: z ∈ X , some stored xU
look up uz̄ and compute w := zuz̄
look up w in list of stored points
z ∈ xU iff w already stored
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Orbit by suborbits

Algorithm (Orbit by suborbits)

Input: G = 〈g1, . . . , gr 〉 acting on X , x ∈ X
store xU and set l := [x ]
repeat forever:

for z in l :
for g in [g1, . . . , gr ]:

if zgU already stored:
compute stabiliser element

else:
store zgU
append zg to l

exit if orbit and stabiliser ready

Output: l , U-suborbits, generators for StabG(x)
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Algorithm (Orbit by suborbits)

Input: G = 〈g1, . . . , gr 〉 acting on X , x ∈ X
store xU and set l := [x ]
repeat forever:

for z in l :
for g in [g1, . . . , gr ]:

if zgU already stored:
compute stabiliser element

else:
store zgU
append zg to l

exit if orbit and stabiliser ready
for z in l :

for u in generators of U:
append zu to l

Output: l , U-suborbits, generators for StabG(x)
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Using two helper subgroups
U < V < G two helper subgroups

ˆ : X → Z︸ ︷︷ ︸
hom. of V -sets

, ¯ : Z → Y

, ¯ : X → Z → Y︸ ︷︷ ︸
hom. of U-sets

=⇒ can archive U-suborbits in Z and X !

Preparations:
enumerate Z completely by U-orbits
choose one U-minimal point in each V -orbit of Z ,
call it V -minimal
call x ∈ X V -minimal, iff x̂ ∈ Z is V -minimal
compute a transversal T : V =

⋃̇
t∈T tU

for every U-minimal point in z ∈ Z store:
StabV (z) if z is V -minimal
nothing if the V -minimal point of zV lies in zU
an element tz ∈ T such that ztzU contains the
V -minimal point of zV
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V -minimalising

Algorithm (V -minimalisation)

Input: x ∈ X
lookup u ∈ U such that w := xu is U-minimal
(=⇒ ŵ ∈ V is U-minimal)
if ŵU does not contain the V -minimal point of ŵV :

look up t ∈ T such that ŵ tU contains it
set w := wt
look up u′ ∈ U such that wu′ is U-minimal
set w := wu′

else:
set t := 1 and u′ := 1

(now w is U-minimal and
ŵU contains the V -minimal point of ŵV )

unless ŵ is the V -minimal point:
find s ∈ StabU(w̄) with ŵs V -minimal

Output: vx := utu′s ∈ V such that xvx is V -minimal
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look up t ∈ T such that ŵ tU contains it
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Evolution of an orbit enumeration

1 42 3 [min]

90%
80%

95%: 5,3 min

25%

50%

75%

100%

98%: 6,7 min

N−orbit: 90.699.264 vectors

100%: 18,3 min

This is a typical time evolution for orbit enumerations!
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A half is enough!

Assume we
know |G|,
already have enumerated some part of xG, and
already know some S < StabG(x) and |S|.

Then:
2 · Size(enumerated part) · |S| ≥ |G|

if and only if
S already is the full stabiliser StabG(x) and
we already have enumerated at least half of |xG|

because if S < StabG(x) then the index is at least 2.
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Finding homomorphisms
Let G act linearly on a F -vectorspace M:

ρ : G → EndF (M)

N < M a G-invariant subspace,
π : M → M/N the canonical map.

Then the following diagram commutes for all g ∈ G:

M

π
��

·g // M

π
��

M/N
·g // M/N

with the induced action on M/N.

The same holds for the projective action, if we replace
M by P(M) and
P(M/N) by P(M/N) ∪ {0}.
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Finding orbits

We can now enumerate halves of orbits.

But how do we avoid enumerating them more than once?

Assume we “know” a half of xG, then for some w ∈ X
we can still check, whether w ∈ xG:

Algorithm (Membership test in half-orbit)

Input: w ∈ X and at least a half of xG.
for 100 random elements g ∈ G:

if wg in half of xG:
return True

return False

Find bigger orbits by random search.

But how to find small orbits?
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Assume we “know” a half of xG, then for some w ∈ X
we can still check, whether w ∈ xG:

Algorithm (Membership test in half-orbit)

Input: w ∈ X and at least a half of xG.
for 100 random elements g ∈ G:

if wg in half of xG:
return True

return False

Find bigger orbits by random search.

But how to find small orbits?
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Finding the small orbits

Short orbits have big stabilisers.

Guess stabilisers:
use maximal subgroups (→ Rob’s WWW Atlas)
find invariant subspaces (→ MEATAXE)

Guess elements of stabilisers:
use conjugacy class reps. (→ Rob’s WWW Atlas)
try vectors in eigenspaces
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Finding all orbits

Build up a database of halves of pairwise disjoint orbits.

Produce representative candidates for the small orbits.

Produce random representatives for the big orbits.

For all vectors: Test if they are in a known orbit half.
If not, enumerate half of new orbit.

Do this until the sum of the orbit lengths is the total
number of points.
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Verification of Disjointness

How can we prove that two orbits are different knowing
only half of them?

Solution: Enumerate 51% of the orbits!

Lemma (Disjointness)
Two subsets of xG of size > |xG|/2 intersect nontrivially.

Algorithm (Disjointness proof)

Input: M ⊆ xG with 2 · |M| > |xG| and
M ′ ⊆ x ′G with 2 · |M ′| > |x ′G|
assume both M and M ′ are unions of V -sets

Check whether a V -orbit rep. of M is in M ′ or not.
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The Result
The orbit lengths of the 48 orbits of Co1 on P(F24

5 ) are:

98 280 636 539 904 000 103 119 464 448 000
8 386 560 1 080 188 928 000 180 459 062 784 000

199 017 000 1 611 241 632 000 180 459 062 784 000
226 044 000 4 687 248 384 000 193 348 995 840 000

2 314 690 560 4 687 248 384 000 262 485 909 504 000
4 577 391 000 9 374 496 768 000 300 765 104 640 000
4 629 381 120 12 889 933 056 000 524 971 819 008 000

16 982 784 000 12 889 933 056 000 721 836 251 136 000
46 872 483 840 17 186 577 408 000 773 395 983 360 000
67 135 068 000 17 823 117 312 000 824 955 715 584 000
93 744 967 680 21 873 825 792 000 824 955 715 584 000

318 269 952 000 21 873 825 792 000 1 203 060 418 560 000
402 810 408 000 32 998 228 623 360 1 443 672 502 272 000
407 586 816 000 51 559 732 224 000 1 924 896 669 696 000
407 586 816 000 69 296 280 109 056 2 165 508 753 408 000
563 934 571 200 103 119 464 448 000 2 887 345 004 544 000

Long limit: 2 980 232 238 769 531

=⇒ no long orbit! Total: 14 901 161 193 847 656
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In the end, the calculation

used three helper subgroups: U1 < U2 < U3 < Co1

of orders: 10 752, 371 589 120 and 89 181 388 800,
using quotients of codimensions 8, 8 and 16,

needed 2.3 Gigabytes of main memory on one PC
and about 2.5 hours of CPU time,
stored about 30 000 000 vectors altogether
thereby saving a factor of about 500 000 000, and
was performed in GAP using the orb package.



Enumerating orbits
of Co1 on P(F24

5 )

The Problem
The Question

The Action

The Size

Enumerating large
Orbits
Standard orbit enumeration

Using one helper subgroup

Orbit by suborbits

Using two helper subgroups

Halves of orbits

The Solution
Finding homomorphisms

Finding (small) orbits

Finding all orbits

Verification of Disjointness

The Result

Memory and Runtime Data

Memory and Runtime Data

In the end, the calculation

used three helper subgroups: U1 < U2 < U3 < Co1

of orders: 10 752, 371 589 120 and 89 181 388 800,
using quotients of codimensions 8, 8 and 16,
needed 2.3 Gigabytes of main memory on one PC
and about 2.5 hours of CPU time,

stored about 30 000 000 vectors altogether
thereby saving a factor of about 500 000 000, and
was performed in GAP using the orb package.



Enumerating orbits
of Co1 on P(F24

5 )

The Problem
The Question

The Action

The Size

Enumerating large
Orbits
Standard orbit enumeration

Using one helper subgroup

Orbit by suborbits

Using two helper subgroups

Halves of orbits

The Solution
Finding homomorphisms

Finding (small) orbits

Finding all orbits

Verification of Disjointness

The Result

Memory and Runtime Data

Memory and Runtime Data

In the end, the calculation

used three helper subgroups: U1 < U2 < U3 < Co1

of orders: 10 752, 371 589 120 and 89 181 388 800,
using quotients of codimensions 8, 8 and 16,
needed 2.3 Gigabytes of main memory on one PC
and about 2.5 hours of CPU time,
stored about 30 000 000 vectors altogether
thereby saving a factor of about 500 000 000, and

was performed in GAP using the orb package.



Enumerating orbits
of Co1 on P(F24

5 )

The Problem
The Question

The Action

The Size

Enumerating large
Orbits
Standard orbit enumeration

Using one helper subgroup

Orbit by suborbits

Using two helper subgroups

Halves of orbits

The Solution
Finding homomorphisms

Finding (small) orbits

Finding all orbits

Verification of Disjointness

The Result

Memory and Runtime Data

Memory and Runtime Data

In the end, the calculation

used three helper subgroups: U1 < U2 < U3 < Co1

of orders: 10 752, 371 589 120 and 89 181 388 800,
using quotients of codimensions 8, 8 and 16,
needed 2.3 Gigabytes of main memory on one PC
and about 2.5 hours of CPU time,
stored about 30 000 000 vectors altogether
thereby saving a factor of about 500 000 000, and
was performed in GAP using the orb package.


	The Problem
	The Question
	The Action
	The Size

	Enumerating large Orbits
	Standard orbit enumeration
	Using one helper subgroup
	Orbit by suborbits
	Using two helper subgroups
	Halves of orbits

	The Solution
	Finding homomorphisms
	Finding (small) orbits
	Finding all orbits
	Verification of Disjointness
	The Result
	Memory and Runtime Data


