Cryptography
using Primes

Max Neunhoffer

Cryptography using Primes

Max Neunhoffer

University of St Andrews

20 June 2008

piakaal Computing with remainders

Max Neunhoffer

For a, n € Z we can divide a with remainder by n:
a=q-n+r, with q,r € Z,

suchthat0 <r < n.

piakaal Computing with remainders

Max Neunhoffer

For a, n € Z we can divide a with remainder by n:
a=q-n+r, with q,r € Z,

suchthat0 <r < n.
— g and r are uniquely determined.

Cryptography

pchsall Computing with remainders

Max Neunhoffer

For a, n € Z we can divide a with remainder by n:
a=q-n+r, with q,r € Z,
suchthat0 <r < n.

— g and r are uniquely determined.

We write
a=b (mod n)

if a and b have the same remainder on division by n.

piakaal Computing with remainders

Max Neunhoffer

For a, n € Z we can divide a with remainder by n:
a=q-n+r, with q,r € Z,
suchthat0 <r < n.

— g and r are uniquely determined.

We write
a=b (mod n)

if a and b have the same remainder on division by n.
We say: “ais equal to b modulo n”.

Cryptography

pchsall Computing with remainders

Max Neunhoffer

For a, n € Z we can divide a with remainder by n:
a=q-n+r, with q,r € Z,
suchthat0 <r < n.

— g and r are uniquely determined.

We write
a=b (mod n)

if a and b have the same remainder on division by n.
We say: “ais equal to b modulo n”.

Same as: the difference a — b is divisible by n.

Cryptography

pchsall Computing with remainders

Max Neunhoffer

For a, n € Z we can divide a with remainder by n:
a=q-n+r, with q,r € Z,
suchthat0 <r < n.

— g and r are uniquely determined.

We write
a=b (mod n)

if a and b have the same remainder on division by n.
We say: “ais equal to b modulo n”.
Same as: the difference a — b is divisible by n.

Note in particular: a=r (mod n).

Cryptography

using Primes POWGFI ng

Max Neunhoffer

curity of RSA

Note (Computation tricks)

If a= 2 (mod n) and b= b (mod n), then

at+b

a+b (mod n)

Cryptography

using Primes POWGFI ng
Hexteunnoter ol Noote (Computation tricks)

If a= 2 (mod n) and b= b (mod n), then

Af

at+b

a+b (mod n)

and

Security of RSA

a-b=4a-b (mod n)

Cryptography

using Primes POWGFI ng
Note (Computation tricks)

If a= 2 (mod n) and b= b (mod n), then

Max Neunhoffer

Af

a+b=2a+b (modn)
Security of RSA and ~
a-b=a-b (mod n)
and thus
a* =3 (mod n).

Cryptography

using Primes POWGFI ng
Note (Computation tricks)

If a= 2 (mod n) and b= b (mod n), then

Max Neunhoffer

Af

a+b=2a+b (modn)
Security of RSA and ~
a-b=a-b (mod n)
and thus
a* =3 (mod n).

Can we compute 123"2° modulo 10 easily?

Cryptography

using Primes POWGFI ng
Note (Computation tricks)

If a= 2 (mod n) and b= b (mod n), then

Max Neunhoffer

Af

a+b=2a+b (modn)
Security of RSA and ~
a-b=a-b (mod n)
and thus
a* =3 (mod n).

Can we compute 123"2° modulo 10 easily?
123129

Cryptography

using Primes POWGFI ng
Note (Computation tricks)

If a= 2 (mod n) and b= b (mod n), then

Max Neunhoffer

Af

a+b=2a+b (modn)
Security of RSA and ~
a-b=a-b (mod n)
and thus
a* =3 (mod n).

Can we compute 123"2° modulo 10 easily?
12312 = 3129 (mod 10)

Cryptography

using Primes POWGFI ng
Note (Computation tricks)

If a= 2 (mod n) and b= b (mod n), then

Max Neunhoffer

Af

a+b=2a+b (modn)
Security of RSA and ~
a-b=a-b (mod n)
and thus
a* =3 (mod n).

Can we compute 123"2° modulo 10 easily?
1238 = 31 =3'*1= (mod 10)

Cryptography

using Primes POWGFI ng
Note (Computation tricks)

If a= 2 (mod n) and b= b (mod n), then

Max Neunhoffer

Af

a+b=2a+b (modn)
Security of RSA and ~
a-b=a-b (mod n)
and thus
a* =3 (mod n).

Can we compute 123"2° modulo 10 easily?
123129 = 3129 = 314128 — 3.3") (mod 10)

kil Powering
Note (Computation tricks)
If a= 2 (mod n) and b= b (mod n), then

Max Neunhoffer

a+b (mod n)

QD
+
(o
111

and

Security of RSA

a-b=4a-b (mod n)

and thus

a* =3 (mod n).

Can we compute 123"2° modulo 10 easily?
123129 = 3129 =31+128 = 3.3(2") (mod 10)
= 3-((((((3*)?)%)?)?)?)? (mod 10)

Cryptography
using Primes

Max Neunhoffer

Security of RSA

Powering

Note (Computation tricks)

If a= 2 (mod n) and b= b (mod n), then

and

and thus

a+b (mod n)

QD
+
(o
111

a-b=4a-b (mod n)

a* =3 (mod n).

Can we compute 123"2° modulo 10 easily?

123129

3129 = 314128 — 3. 3(2") (mod 10)
3+ ((((((8%)%))?)%)?)? (mod 10)
3-(((((9%)%)%)%)%)? (mod 10)

Cryptography H
using Primes POWGFI ng

Max Neunhoffer

and

Security of RSA

and thus

Note (Computation tricks)
If a= 2 (mod n) and b= b (mod n), then

a+b (mod n)

QD
+
(o
111

a-b=4a-b (mod n)

K

a* =3 (mod n).

123129

Can we compute 123"2° modulo 10 easily?

3129 = 314128 — 3. 3(2") (mod 10)
3+ ((((((8%)%))?)%)?)? (mod 10)
3-(((((9%)%)%)%)%)? (mod 10)
3-((((1%2)?)%)? (mod 10)

Cryptography H
using Primes POWGFI ng

Max Neunhoffer

and

Security of RSA

and thus

Note (Computation tricks)
If a= 2 (mod n) and b= b (mod n), then

a+b (mod n)

QD
+
(o
111

a-b=4a-b (mod n)

K

a* =3 (mod n).

123129

Can we compute 123"2° modulo 10 easily?

3129 = 314128 — 3. 3(2") (mod 10)
3+ ((((((8%)%))?)%)?)? (mod 10)
3-(((((9%)%)%)%)%)? (mod 10)
3-((((1%)?)?)%)? = 3 (mod 10)

pasdl Fcormat and Euclid

Max Neunhoffer

Theorem (Little Theorem of Fermat)
Let n = p - g be the product of two primes p and q. Then

a1 =1 (mod n)

for all integers a that are not divisible by p or q.

pasdl Fcormat and Euclid

Max Neunhoffer

Theorem (Little Theorem of Fermat)
Let n = p - g be the product of two primes p and q. Then

a1 =1 (mod n)

for all integers a that are not divisible by p or q.

From this we get immediately:
Fork =1 (mod (p—1)(g — 1)) we have

a‘=a (mod n),

pasdl Fcormat and Euclid

Max Neunhoffer

Theorem (Little Theorem of Fermat)
Let n = p - g be the product of two primes p and q. Then

a1 =1 (mod n)

for all integers a that are not divisible by p or q.

From this we get immediately:
Fork =1 (mod (p—1)(g — 1)) we have

a“=a (modn),

as a = g (P-1(@-D)+1 = (g-D@-1)x. 3= 3 (mod n).

Cryptography

using Primes Fermat and EUC“d

Max Neunhoffer

Theorem (Little Theorem of Fermat)
Let n = p - g be the product of two primes p and q. Then

a1 =1 (mod n)

for all integers a that are not divisible by p or q.

From this we get immediately:
Fork =1 (mod (p—1)(g — 1)) we have

a“=a (modn),

as a = g (P-1(@-D)+1 = (g-D@-1)x. 3= 3 (mod n).

Theorem (Euclidean Algorithm)

Ifd, m € Z do not have a common prime divisor, then it is
(efficiently) possible to determine an e € 7Z, such that
de=1 (mod m).

el Preparations

Max Neunhoffer

The RSA (Rivest-Shamir-Adleman) cryptosystem:

If Alice wants to send a secret message to Bob:

el Preparations

Max Neunhoffer

The RSA (Rivest-Shamir-Adleman) cryptosystem:

If Alice wants to send a secret message to Bob:

@ Bob chooses two primes p and g
@ and computesn=p-gand m=(p—1)(g—1).

el Preparations

Max Neunhoffer

The RSA (Rivest-Shamir-Adleman) cryptosystem:

If Alice wants to send a secret message to Bob:

@ Bob chooses two primes p and g
@ and computesn=p-gand m=(p—1)(g—1).

@ He then chooses d such that m and d do not have a
common prime divisor

el Preparations

Max Neunhoffer

The RSA (Rivest-Shamir-Adleman) cryptosystem:

If Alice wants to send a secret message to Bob:

@ Bob chooses two primes p and g

@ and computesn=p-gand m=(p—1)(g—1).

@ He then chooses d such that m and d do not have a
common prime divisor

@ and computes an e, such that de =1 (mod m).

el Preparations

Max Neunhoffer

The RSA (Rivest-Shamir-Adleman) cryptosystem:

If Alice wants to send a secret message to Bob:

@ Bob chooses two primes p and g
@ and computesn=p-gand m=(p—1)(g—1).

@ He then chooses d such that m and d do not have a
common prime divisor

@ and computes an e, such that de =1 (mod m).
@ He then publishes nand e

el Preparations

Max Neunhoffer

The RSA (Rivest-Shamir-Adleman) cryptosystem:

If Alice wants to send a secret message to Bob:

@ Bob chooses two primes p and g
@ and computesn=p-gand m=(p—1)(g—1).

@ He then chooses d such that m and d do not have a
common prime divisor

and computes an e, such that de =1 (mod m).
He then publishes nand e
and keeps secret p, g, mand d.

il Encrypting and Decrypting

Max Neunhoffer

Public: nand e Secret: p, g, m=(p—1)(g—1) and dJ

Encrypting and Decrypting

il Encrypting and Decrypting

Max Neunhoffer

Public: nand e Secret: p, g, m=(p—1)(g—1) and dJ

Alice can now encrypt a message:

Encrypting and Decrypting

il Encrypting and Decrypting

Max Neunhoffer

Public: nand e Secret: p, g, m=(p—1)(g—1) and dJ

Alice can now encrypt a message:

@ Encode the message as numbers awith 1 < a < n.

Encrypting and Decrypting

il Encrypting and Decrypting

Max Neunhoffer

Public: nand e Secret: p, g, m=(p—1)(g—1) and dJ

Alice can now encrypt a message:

@ Encode the message as numbers awith 1 < a < n.
@ Compute encrypted message c by

Encrypting and Decrypting

e

c=a" (mod n) with1 <c<n

il Encrypting and Decrypting

Max Neunhoffer

Public: nand e Secret: p, g, m=(p—1)(g—1) and dJ

Alice can now encrypt a message:

@ Encode the message as numbers awith 1 < a < n.
@ Compute encrypted message c by

Encrypting and Decrypting

e

c=a" (mod n) with1 <c<n

@ Send c to Bob.

il Encrypting and Decrypting

Max Neunhoffer

Public: nand e Secret: p, g, m=(p—1)(g—1) and dJ

Alice can now encrypt a message:

@ Encode the message as numbers awith 1 < a < n.
@ Compute encrypted message c by

Encrypting and Decrypting

e

c=a" (mod n) with1 <c<n

@ Send c to Bob.

Bob can then decrypt the message:

il Encrypting and Decrypting

Max Neunhoffer

Public: nand e Secret: p, g, m=(p—1)(g—1) and dJ

Alice can now encrypt a message:

@ Encode the message as numbers awith 1 < a < n.
@ Compute encrypted message c by

Encrypting and Decrypting

e

c=a" (mod n) with1 <c<n

@ Send c to Bob.

Bob can then decrypt the message:
@ Receiving c, he computes b by

b=c? (modn) withi<b<n

il Encrypting and Decrypting

Max Neunhoffer

Public: nand e Secret: p, g, m=(p—1)(g—1) and dJ

Alice can now encrypt a message:

@ Encode the message as numbers awith 1 < a < n.
@ Compute encrypted message c by

Encrypting and Decrypting

e

c=a" (mod n) with1 <c<n

@ Send c to Bob.

Bob can then decrypt the message:
@ Receiving c, he computes b by

b=c? (modn) withi<b<n

@ He gets back b= c¢? = (a%)? = a% = a (mod n)
sincede=1 (mod (p—1)(g—1)).

sl octorisation

Max Neunhoffer

Public: nande Secret: p,q, m=(p—1)(g—1) and dJ

If one knows p and g, one can compute m and d.

sl octorisation

Max Neunhoffer

Public: nande Secret: p,q, m=(p—1)(g—1) and dJ

If one knows p and g, one can compute m and d.

If one knows m= (p—1)(q — 1), then also p and q.

sl octorisation

Max Neunhoffer

Public: nande Secret: p,q, m=(p—1)(g—1) and dJ

If one knows p and g, one can compute m and d.
If one knows m= (p—1)(q — 1), then also p and q.

Proof: p+q=n+1-(pg—p—-q+1) and J

sl octorisation

Max Neunhoffer

Public: nande Secret: p,q, m=(p—1)(g—1) and dJ

If one knows p and g, one can compute m and d.
If one knows m= (p—1)(q — 1), then also p and q.

Proof: p+q=n+1-(pg—p—-q+1) and
(X=p)(X—q)=X?—(p+q)X +pq J

sl octorisation

Max Neunhoffer

Public: nande Secret: p,q, m=(p—1)(g—1) and dJ

If one knows p and g, one can compute m and d.
If one knows m= (p—1)(q — 1), then also p and q.

Proof: p+q=n+1-(pg—p—-q+1) and
(X=p)(X—q)=X?—(p+q)X +pq J

Knowing nin principle determines p and q!

piasall Foctorisation

Max Neunhoffer

Public: nande Secret: p,q, m=(p—1)(g—1) and dJ

If one knows p and g, one can compute m and d.
If one knows m= (p—1)(q — 1), then also p and q.

Proof: p+q=n+1-(pg—p—-q+1) and
(X=p)(X—q)=X?—(p+q)X +pq J

Knowing nin principle determines p and q!

However, actually computing p and q from nis HARD.]

piasal Computing roots and discrete logarithm

Max Neunhoffer

Public: nand e Secret: p,q, m=(p—1)(g—1) and dJ

Cracking the encryption is basically solving the equation
x®=c (mod n)

that is, computing e-th roots.

piasal Computing roots and discrete logarithm

Max Neunhoffer

Public: nand e Secret: p,q, m=(p—1)(g—1) and dJ

Cracking the encryption is basically solving the equation
x®=c (mod n)
that is, computing e-th roots.

However, computing e-th roots is HARD.)

piasal Computing roots and discrete logarithm

Max Neunhoffer

Public: nand e Secret: p,q, m=(p—1)(g—1) and dJ

Cracking the encryption is basically solving the equation
x®=c (mod n)
that is, computing e-th roots.

However, computing e-th roots is HARD.)

@ Assume 1 < z < nsuch that every ais a power of z
modulo n (not always possible!).

piasal Computing roots and discrete logarithm

Max Neunhoffer

Public: nand e Secret: p,q, m=(p—1)(g—1) and dJ

Cracking the encryption is basically solving the equation
x®=c (mod n)
that is, computing e-th roots.

However, computing e-th roots is HARD.)

@ Assume 1 < z < nsuch that every ais a power of z
modulo n (not always possible!).
@ Compute w = z° (mod n) with 1 < w < n.

piasal Computing roots and discrete logarithm

Max Neunhoffer

Public: nand e Secret: p,q, m=(p—1)(g—1) and dJ

Cracking the encryption is basically solving the equation
x®=c (mod n)
that is, computing e-th roots.

However, computing e-th roots is HARD.)

@ Assume 1 < z < nsuch that every ais a power of z
modulo n (not always possible!).

@ Compute w = z° (mod n) with 1 < w < n.

@ Solve ¢ = w* (“discrete logarithm”).

piasal Computing roots and discrete logarithm

Max Neunhoffer

Public: nand e Secret: p,q, m=(p—1)(g—1) and dJ

Cracking the encryption is basically solving the equation
x®=c (mod n)
that is, computing e-th roots.

However, computing e-th roots is HARD.)

@ Assume 1 < z < nsuch that every ais a power of z
modulo n (not always possible!).

@ Compute w = z° (mod n) with 1 < w < n.

@ Solve ¢ = w* (“discrete logarithm”).

@ Then a= z*¥ (mod n) since

a=c?=w™ = (2% = (299 = z¥ (mod n)

piasal Computing roots and discrete logarithm

Max Neunhoffer

Public: nand e Secret: p,q, m=(p—1)(g—1) and dJ

Cracking the encryption is basically solving the equation
x®=c (mod n)
that is, computing e-th roots.

However, computing e-th roots is HARD. |

@ Assume 1 < z < nsuch that every ais a power of z
modulo n (not always possible!).

@ Compute w = z° (mod n) with 1 < w < n.

@ Solve ¢ = w* (“discrete logarithm”).

@ Then a= z*¥ (mod n) since

a=c?=w™ = (2% = (299 = z¥ (mod n)

However, solving discrete logarithms like ¢ = z¥ is HARD.J

piacknal Not proved!

Max Neunhoffer

There is
no efficient method known
for
integer factorisation
Comsorn or
computing e-th roors
or

discrete logarithms!

piacknal Not proved!

Max Neunhoffer

There is
no efficient method known
for
integer factorisation
or
computing e-th roors
or

discrete logarithms!

However: It is also not proved, that there is none!.

	A few tools
	Computing with remainders
	Powering
	Fermat and Euclid

	RSA
	Preparations
	Encrypting and Decrypting

	Security of RSA
	Factorisation
	Computing roots
	Not proved!

