Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Is there a Sudoku puzzle with 16 clues?

Max Neunhöffer

University of St Andrews

Aberdeen 24.3.2010

Max Neunhöffer

The Problem

What is a Sudoku?

How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Sudoku Grids

7	9	3	6	8	4	5	1	2
4	8	6	5	1	2	9	3	7
1	2	5	9	7	3	8	4	6
9	3	2	7	5	1	6	8	4
5	7	8	2	4	6	3	9	1
6	4	1	3	9	8	7	2	5
3	1	9	4	6	5	2	7	8
8	5	7	1	2	9	4	6	3
2	6	4	8	3	7	1	5	9

Max Neunhöffer

The Problem

What is a Sudoku?

How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Sudoku Grids

7	9	3	6	8	4	5	1	2
4	8	6	5	1	2	9	3	7
1	2	5	9	7	3	8	4	6
9	3	2	7	5	1	6	8	4
5	7	8	2	4	6	3	9	1
6	4	1	3	9	8	7	2	5
3	1	9	4	6	5	2	7	8
8	5	7	1	2	9	4	6	3
2	6	4	8	3	7	1	5	9

Rule

Each row, column and 3 \times 3-block contains the numbers 1 to 9 each exactly once.

Max Neunhöffer

The Problem

What is a Sudoku?

How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Sudoku Puzzles

							1	
4								
	2							
				5		6		4
		8				3		
		1		9				
3			4			2		
	5		1					
			8		7			

Rule

Each row, column and 3×3 -block contains the numbers 1 to 9 each exactly once.

Max Neunhöffer

The Problem

What is a Sudoku?

How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Sudoku Puzzles

							1	
4								
	2							
				5		6		4
		8				3		
		1		9				
3			4			2		
	5		1					
			8		7			

Rule

Each row, column and 3×3 -block contains the numbers 1 to 9 each exactly once. It is guaranteed that there is a unique solution.

Max Neunhöffer

The Problem

What is a Sudoku?

How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Sudoku Puzzles

7	9	3	6	8	4	5	1	2
4	8	6	5	1	2	9	3	7
1	2	5	9	7	3	8	4	6
9	3	2	7	5	1	6	8	4
5	7	8	2	4	6	3	9	1
6	4	1	3	9	8	7	2	5
3	1	9	4	6	5	2	7	8
8	5	7	1	2	9	4	6	3
2	6	4	8	3	7	1	5	9

Rule

Each row, column and 3×3 -block contains the numbers 1 to 9 each exactly once. It is guaranteed that there is a unique solution.

Solving Sudokus

Max Neunhöffer

The Problem

What is a Sudoku?

How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

7	9	3	6	8	4	5	1	2
4	8	6	5	1	2	9		7
1	2	5	9	7	3	8	4	6
9	3	2	7	5	1	6	8	4
5	7	8				3	9	1
6	4	1	3	9	8	7	2	5
3	1	9	4	6	5	2	7	8
8	5	7				4	6	3
2	6	4	8	3	7	1	5	9

Solving Sudokus

Max Neunhöffer

The Problem

What is a Sudoku?

How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search

7	9	3	6	8	4	5	1	2
4	8	6	5	1	2	9		7
1	2	5	9	7	3	8	4	6
9	3	2	7	5	1	6	8	4
5	7	8				3	9	1
6	4	1	3	9	8	7	2	5
3	1	9	4	6	5	2	7	8
8	5	7				4	6	3
2	6	4	8	3	7	1	5	9

Solving Sudokus

Max Neunhöffer

The Problem

What is a Sudoku?

How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

7	9	3	6	8	4	5	1	2
4	8	6	5	1	2	9	3	7
1	2	5	9	7	3	8	4	6
9	3	2	7	5	1	6	8	4
5	7	8				3	9	1
6	4	1	3	9	8	7	2	5
3	1	9	4	6	5	2	7	8
8	5	7				4	6	3
2	6	4	8	3	7	1	5	9

Solving Sudokus

Max Neunhöffer

The Problem

What is a Sudoku?

How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

7	9	3	6	8	4	5	1	2
4	8	6	5	1	2	9	3	7
1	2	5	9	7	3	8	4	6
9	3	2	7	5	1	6	8	4
5	7	8				3	9	1
6	4	1	3	9	8	7	2	5
3	1	9	4	6	5	2	7	8
8	5	7				4	6	3
2	6	4	8	3	7	1	5	9

Solving Sudokus

Max Neunhöffer

The Problem

What is a Sudoku?

How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

7	9	3	6	8	4	5	1	2
4	8	6	5	1	2	9	3	7
1	2	5	9	7	3	8	4	6
9	3	2	7	5	1	6	8	4
5	7	8	2			3	9	1
6	4	1	3	9	8	7	2	5
3	1	9	4	6	5	2	7	8
8	5	7	1			4	6	3
2	6	4	8	3	7	1	5	9

Solving Sudokus

Max Neunhöffer

The Problem

What is a Sudoku?

How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

7	9	3	6	8	4	5	1	2
4	8	6	5	1	2	9	3	7
1	2	5	9	7	3	8	4	6
9	3	2	7	5	1	6	8	4
5	7	8	2	4	6	3	9	1
6	4	1	3	9	8	7	2	5
3	1	9	4	6	5	2	7	8
8	5	7	1	2	9	4	6	3
2	6	4	8	3	7	1	5	9

Max Neunhöffer

The Problem

What is a Sudoku?

How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Solving Sudokus

							1	
4								
	2							
				5		6		4
		8				3		
		1		9				
3			4			2		
	5		1					
			8		7			

How difficult is a Sudoku puzzle?

Max Neunhöffer

The Problem

What is a Sudoku?

How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Solving Sudokus

							1	
4								
	2							
				5		6		4
		8				3		
		1		9				
3			4			2		
	5		1					
			8		7			

How difficult is a Sudoku puzzle?

 \longrightarrow Depends on how much one has to try.

Max Neunhöffer

The Problem

What is a Sudoku?

How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Solving Sudokus

							1	
4								
	2							
				5		6		4
		8				3		
		1		9				
3			4			2		
	5		1					
			8		7			

How difficult is a Sudoku puzzle?

 \longrightarrow Depends on how much one has to try.

A computer solves this in $\approx 28 \mu s \approx 45000$ clock cycles!

Max Neunhöffer

The Problem

What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search

The Result

Is there one with 16 clues?

							1	
4								
	2							
				5		6		4
		8				3		
		1		9				
3			4			2		
	5		1					
			8		7			

Max Neunhöffer

The Problem

What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Is there one with 16 clues?

							1	
4								
	2							
				5		6		4
		8				3		
		1		9				
3			4			2		
	5		1					
			8		7			

This puzzle has 17 clues.

Max Neunhöffer

The Problem

What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Is there one with 16 clues?

							1	
4								
	2							
				5		6		4
		8				3		
		1		9				
3			4			2		
	5		1					
			8		7			

This puzzle has 17 clues. None of them can be left out.

Max Neunhöffer

The Problem

What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Is there one with 16 clues?

							1	
4								
	2							
				5		6		4
		8				3		
		1		9				
3			4			2		
	5		1					
			8		7			

This puzzle has 17 clues. None of them can be left out.

Question:

Are there 16 clues which uniquely define a Sudoku grid?

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

What is known?

• There are altogether

 $6\,670\,903\,752\,021\,072\,936\,960\approx 6.671\cdot 10^{21}$

different full Sudoku grids.

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

What is known?

• There are altogether

 $6\,670\,903\,752\,021\,072\,936\,960\approx 6.671\cdot 10^{21}$

different full Sudoku grids.

 Gordon Royle (University of Western Australia, Perth) maintains a collection of currently 49151
pairwise inequivalent Sudoku puzzles with 17 clues.

http://www.csse.uwa.edu.au/~gordon/sudokumin.php

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

What is known?

• There are altogether

 $6\,670\,903\,752\,021\,072\,936\,960\approx 6.671\cdot 10^{21}$

different full Sudoku grids.

 Gordon Royle (University of Western Australia, Perth) maintains a collection of currently 49151 pairwise inequivalent Sudoku puzzles with 17 clues.

http://www.csse.uwa.edu.au/~gordon/sudokumin.php

• He reckons "that new 17-clue Sudoku puzzles are becoming rarer to find".

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

What is known?

• There are altogether

 $6\,670\,903\,752\,021\,072\,936\,960\approx 6.671\cdot 10^{21}$

different full Sudoku grids.

 Gordon Royle (University of Western Australia, Perth) maintains a collection of currently 49151
pairwise inequivalent Sudoku puzzles with 17 clues.

http://www.csse.uwa.edu.au/~gordon/sudokumin.php

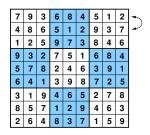
- He reckons "that new 17-clue Sudoku puzzles are becoming rarer to find".
- There is a set of 16 clues which allows exactly two solutions.

Max Neunhöffer

The Problem

What is a Sudoku? How many clues?

Symmetry


Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search

The Result

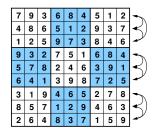
Equivalence of Sudokus

Max Neunhöffer

The Problem

What is a Sudoku? How many clues?

Symmetry


Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search

The Result

Equivalence of Sudokus

Equivalence transformations:

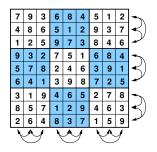
Permute: rows in a block,

Max Neunhöffer

The Problem

What is a Sudoku? How many clues?

Symmetry


Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Equivalence of Sudokus

Equivalence transformations:

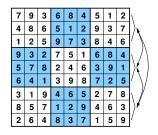
• Permute: rows in a block, columns in a block,

Max Neunhöffer

The Problem

What is a Sudoku? How many clues?

Symmetry


Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search

The Result

Equivalence of Sudokus

Equivalence transformations:

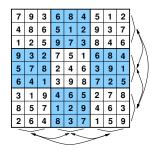
 Permute: rows in a block, columns in a block, block-rows,

Max Neunhöffer

The Problem

What is a Sudoku? How many clues?

Symmetry


Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search

The Result

Equivalence of Sudokus

Equivalence transformations:

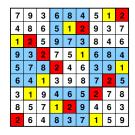
 Permute: rows in a block, columns in a block, block-rows, block-columns

Max Neunhöffer

The Problem

What is a Sudoku? How many clues?

Symmetry


Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Equivalence of Sudokus

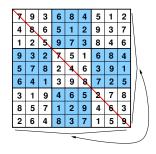
- Permute: rows in a block, columns in a block, block-rows, block-columns
- Renumber: entries

Max Neunhöffer

The Problem

What is a Sudoku? How many clues?

Symmetry


Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Equivalence of Sudokus

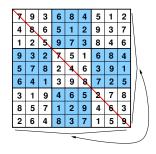
- Permute: rows in a block, columns in a block, block-rows, block-columns
- Renumber: entries
- Flip: entire grid

Max Neunhöffer

The Problem

What is a Sudoku? How many clues?

Symmetry


Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Equivalence of Sudokus

- Permute: rows in a block, columns in a block, block-rows, block-columns
- Renumber: entries
- Flip: entire grid
- \longrightarrow All concatenations of these form a group.

Max Neunhöffer

The Problem

What is a Sudoku? How many clues?

Symmetry

Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Equivalence of Sudokus

Definition: Equivalent Sudokus

Two Sudoku grids/puzzles are called equivalent if one arises from the other by applying a sequence of equivalence transformations.

Max Neunhöffer

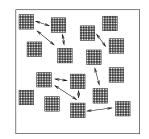
The Problem

What is a Sudoku? How many clues?

Symmetry

Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search


Random Search Finding Unavoidable Sets

The Result

Equivalence of Sudokus

Definition: Equivalent Sudokus

Two Sudoku grids/puzzles are called equivalent if one arises from the other by applying a sequence of equivalence transformations.

Max Neunhöffer

The Problem

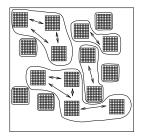
What is a Sudoku? How many clues?

Symmetry

Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search


Random Search Finding Unavoidable Sets


The Result

Equivalence of Sudokus

Definition: Equivalent Sudokus

Two Sudoku grids/puzzles are called equivalent if one arises from the other by applying a sequence of equivalence transformations.

We form equivalence classes or orbits.

Max Neunhöffer

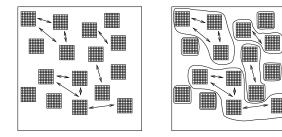
The Problem

What is a Sudoku? How many clues?

Symmetry

Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search


Random Search Finding Unavoidable Sets

The Result

Equivalence of Sudokus

Definition: Equivalent Sudokus

Two Sudoku grids/puzzles are called equivalent if one arises from the other by applying a sequence of equivalence transformations.

We form equivalence classes or orbits.

 \rightarrow There are 5 472 730 538 classes (Russell/Jarvis 2006) <code>http://www.afjarvis.staff.shef.ac.uk/sudoku/</code>

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Symmetry Breaking

We "break the symmetry" by considering exactly one from each equivalence class.

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus

Backtrack Search

Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Symmetry Breaking

We "break the symmetry" by considering exactly one from each equivalence class. Consider only first block row:

• We can renumber to get this left hand 3×3 -block:

1	2	3	4	6	8	9	5	7
4	5	6	9	1	7	8	3	2
7	8	9	3	5	2	1	4	6

Max Neunhöffer

The Problem What is a Sudoku?

How many clues?

Symmetry Equivalent Sudokus

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Symmetry Breaking

We "break the symmetry" by considering exactly one from each equivalence class. Consider only first block row:

• We can renumber to get this left hand 3×3 -block:

1	2	3	4	6	8	9	5	7
4	5	6	9	1	7	8	3	2
7	8	9	3	5	2	1	4	6

Oistinguish cases for first row:

	1	2	3	{4,5,6}	{7,8,9}
Type I)	4	5	6		
	7	8	9		

Max Neunhöffer

The Problem What is a Sudoku?

How many clues?

Symmetry Equivalent Sudokus

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Symmetry Breaking

We "break the symmetry" by considering exactly one from each equivalence class. Consider only first block row:

• We can renumber to get this left hand 3×3 -block:

1	2	3	4	6	8	9	5	7
4	5	6	9	1	7	8	3	2
7	8	9	3	5	2	1	4	6

② Distinguish cases for first row:

	1	2	3	{4,5,6}	{7,8,9}
(Type I)	4	5	6	{7,8,9}	{1,2,3}
	7	8	9	{1,2,3}	{4,5,6}

Max Neunhöffer

The Problem What is a Sudoku?

How many clues?

Symmetry Equivalent Sudokus

Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Symmetry Breaking

We "break the symmetry" by considering exactly one from each equivalence class. Consider only first block row:

• We can renumber to get this left hand 3×3 -block:

1	2	3	4	6	8	9	5	7
4	5	6	9	1	7	8	3	2
7	8	9	3	5	2	1	4	6

Distinguish cases for first row:

	1	2	3	{4,5,6}	{7,8,9}
(Type I)	4	5	6	{7,8,9}	{1,2,3}
	7	8	9	{1,2,3}	{4,5,6}

	1	2	3	{4,5,7}	{6,8,9}
)	4	5	6		
	7	8	9		

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus

Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Symmetry Breaking

We "break the symmetry" by considering exactly one from each equivalence class. Consider only first block row:

• We can renumber to get this left hand 3×3 -block:

1	2	3	4	6	8	9	5	7
4	5	6	9	1	7	8	3	2
7	8	9	3	5	2	1	4	6

Distinguish cases for first row:

	1	2	3	{4,5,6}	{7,8,9}
(Type I)	4	5	6	{7,8,9}	{1,2,3}
	7	8	9	{1,2,3}	{4,5,6}

	1	2	3	{4,5,7}	{6,8,9}
Type II)	4	5	6	{8,9,a}	{7,b,c}
	7	8	9	{6,b,c}	{4,5,a}

where $\{a, b, c\} = \{1, 2, 3\}.$

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry

Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Symmetry Breaking

We "break the symmetry" by considering exactly one from each equivalence class. Consider only first block row:

• We can renumber to get this left hand 3×3 -block:

1	2	3	4	6	8	9	5	7
4	5	6	9	1	7	8	3	2
7	8	9	3	5	2	1	4	6

Distinguish cases for first row:

(Type I)	1	2	3	{4,5,6}	{7,8,9}
	4	5	6	{7,8,9}	{1,2,3}
	7	8	9	{1,2,3}	{4,5,6}

(Type II)	1	2	3	{4,5,7}	{6,8,9}
	4	5	6	{8,9,a}	{7,b,c}
	7	8	9	{6,b,c}	{4,5,a}

where $\{a, b, c\} = \{1, 2, 3\}.$

Some more such arguments ...

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search

Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Unavoidable Sets

Question

Fix one Sudoku grid. Can it be the solution to a 16-clue Sudoku puzzle?

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search

Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search

The Result

Unavoidable Sets

Question

Fix one Sudoku grid. Can it be the solution to a 16-clue Sudoku puzzle?

Number of ways to choose 16 out of 81:

$$\binom{81}{16} = 33\,594\,090\,947\,249\,085 \approx 33\cdot 10^{15}$$

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search

Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Unavoidable Sets

Question

Fix one Sudoku grid. Can it be the solution to a 16-clue Sudoku puzzle?

Number of ways to choose 16 out of 81:

$$\binom{81}{16} = 33\,594\,090\,947\,249\,085 \approx 33\cdot 10^{15}$$

 \implies do not even think about trying all!

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search

Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Unavoidable Sets

Question

Fix one Sudoku grid. Can it be the solution to a 16-clue Sudoku puzzle?

Number of ways to choose 16 out of 81:

$$\binom{81}{16} = 33\,594\,090\,947\,249\,085 \approx 33\cdot 10^{15}$$

 \implies do not even think about trying all!

Idea: We do not have to try all choices.

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search

Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Unavoidable Sets

Question

Fix one Sudoku grid. Can it be the solution to a 16-clue Sudoku puzzle?

Number of ways to choose 16 out of 81:

$$\binom{81}{16} = 33\,594\,090\,947\,249\,085 \approx 33\cdot 10^{15}$$

 \implies do not even think about trying all!

Idea: We do not have to try all choices.

We need constraints that the selection of 16 has to fulfil.

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search

Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search

The Result

Unavoidable Sets

Definition: Unavoidable Set

Let *S* be a filled Sudoku grid. A subset *U* of the 81 positions is called an unavoidable set, if every set of clues uniquely defining *S* has a number in at least one of the positions in U.

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search

Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Unavoidable Sets

Definition: Unavoidable Set

Let *S* be a filled Sudoku grid. A subset *U* of the 81 positions is called an unavoidable set, if every set of clues uniquely defining *S* has a number in at least one of the positions in U.

Questions:

• Are there unavoidable sets and if so how many?

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search

Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Unavoidable Sets

Definition: Unavoidable Set

Let *S* be a filled Sudoku grid. A subset *U* of the 81 positions is called an unavoidable set, if every set of clues uniquely defining *S* has a number in at least one of the positions in U.

Questions:

- Are there unavoidable sets and if so how many?
- How can we find them?

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search

Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Unavoidable Sets

Definition: Unavoidable Set

Let *S* be a filled Sudoku grid. A subset *U* of the 81 positions is called an unavoidable set, if every set of clues uniquely defining *S* has a number in at least one of the positions in U.

Questions:

- Are there unavoidable sets and if so how many?
- How can we find them?
- How does this help?

Max Neunhöffer

The Problem

What is a Sudoku? How many clues?

Symmetry

Equivalent Sudokus Symmetry Breaking

Backtrack Search

Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Unavoidable sets

7	9	3	6	8	4	5	1	2
4	8	6	5	1	2	9	3	7
1	2	5	9	7	3	8	4	6
9	3	2	7	5	1	6	8	4
5	7	8	2	4	6	3	9	1
6	4	1	3	9	8	7	2	5
3	1	9	4	6	5	2	7	8
8	5	7	1	2	9	4	6	3
2	6	4	8	3	7	1	5	9

Max Neunhöffer

The Problem

What is a Sudoku? How many clues?

Symmetry

Equivalent Sudokus Symmetry Breaking

Backtrack Search

Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Unavoidable sets

7	9	3	6	8	4	5	1	2
4	8	6	5	1	2	9	3	7
1	2	5	9	7	3	8	4	6
9	3	2	7	5	1	6	8	4
5	7	8	2	4	6	3	9	1
6	4	1	3	9	8	7	2	5
3	1	9	4	6	5	2	7	8
8	5	7	1	2	9	4	6	3
2	6	4	8	3	7	1	5	9

Max Neunhöffer

The Problem

What is a Sudoku? How many clues?

Symmetry

Equivalent Sudokus Symmetry Breaking

Backtrack Search

Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Unavoidable sets

7	9	3	6	8	4	5	1	2
4	8	6	5	1	2	9	3	7
1	2	5	9	7	3	8	4	6
9	3	2	7	5	1	6	8	4
5	7	8	2	4	6	3	9	1
6	4	1	3	9	8	7	2	5
3	1	9	4	6	5	2	7	8
8	5	7	1	2	9	4	6	3
2	6	4	8	3	7	1	5	9

Max Neunhöffer

The Problem

What is a Sudoku? How many clues?

Symmetry

Equivalent Sudokus Symmetry Breaking

Backtrack Search

Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Unavoidable sets

7	9	3	6	8	4	5	1	2
4	8	6	5	1	2	9	3	7
1	2	5	9	7	3	8	4	6
9	3	2	7	5	1	6	8	4
5	7	8	2	4	6	3	9	1
6	4	1	3	9	8	7	2	5
3	1	9	4	6	5	2	7	8
8	5	7	1	2	9	4	6	3
2	6	4	8	3	7	1	5	9

Max Neunhöffer

The Problem

What is a Sudoku? How many clues?

Symmetry

Equivalent Sudokus Symmetry Breaking

Backtrack Search

Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Unavoidable sets

7	9	3	6	8	4	5	1	2
4	8	6	5	1	2	9	3	7
1	2	5	9	7	3	8	4	6
9	3	2	7	5	1	6	8	4
5	7	8	2	4	6		9	
6	4	1	3	9	8	7	2	5
3				6		2	7	8
8		7		2			6	
2	6		8	3	7		5	

Max Neunhöffer

The Problem

What is a Sudoku? How many clues?

Symmetry

Equivalent Sudokus Symmetry Breaking

Backtrack Search

Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Unavoidable sets

				_		_		
7	9	3	6	8	4	5	1	2
4	8	6	5	1	2	9	3	7
1	2	5	9	7	3	8	4	6
9	3	2	7	5	1	6	8	4
5	7	8	2	4	6		9	
6	4	1	3	9	8	7	2	5
3				6		2	7	8
8		7		2			6	
2	6		8	3	7		5	

Any set of 16 clues cannot avoid the yellow positions. Because this puzzle has more than one solution.

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

The Hitting Set Problem

Problem: Hitting Set (resp. Set Covering)

Let *M* be a set and let A_1, \ldots, A_k be subsets of *M*. Find a minimal subset *H* of *M* which contains at least one element of every A_i for $1 \le i \le k$.

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

The Hitting Set Problem

Problem: Hitting Set (resp. Set Covering)

Let *M* be a set and let A_1, \ldots, A_k be subsets of *M*. Find a minimal subset *H* of *M* which contains at least one element of every A_i for $1 \le i \le k$.

This problem is computationally hard.

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

The Hitting Set Problem

Problem: Hitting Set (resp. Set Covering)

Let *M* be a set and let A_1, \ldots, A_k be subsets of *M*. Find a minimal subset *H* of *M* which contains at least one element of every A_i for $1 \le i \le k$.

This problem is computationally hard.

It is one of Karp's 21 NP-complete problems (\rightarrow [1]).

 Richard M. Karp, *Reducibility Among Combinatorial Problems*, in R. E. Miller and J. W. Thatcher (editors).
Complexity of Computer Computations, 1972, pp. 85–103.

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

The Hitting Set Problem

Problem: Hitting Set (resp. Set Covering)

Let *M* be a set and let A_1, \ldots, A_k be subsets of *M*. Find a minimal subset *H* of *M* which contains at least one element of every A_i for $1 \le i \le k$.

This problem is computationally hard.

It is one of Karp's 21 NP-complete problems (\rightarrow [1]).

We want to solve it to use lots of unavoidable sets to reduce the number of 16-clue sets we need to consider.

 Richard M. Karp, *Reducibility Among Combinatorial Problems*, in R. E. Miller and J. W. Thatcher (editors).
Complexity of Computer Computations, 1972, pp. 85–103.

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Bandom Search Finding Unavoidable Sets

The Result

Algorithm: Hitting Sets

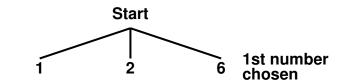
An example Hitting	Set Problem
--------------------	-------------

and	
$\{1, 2, 6\},$	
$\{2,3,4,8\},$	
$\{1,7,8,9\},$	
$\{{\bf 3},{\bf 4},{\bf 6},{\bf 9}\},$	
$\{4,6,10,12\},$	
$\{2,10,11,12\},$	
$\{5,7,8,9\},$	
$\{5,7,10,12\},$	
$\{1,3,4,5,11\}$	}
	$\{1,7,8,9\},\\ \{3,4,6,9\},\\ \{4,6,10,12\},\\ \{2,10,11,12\},\\ \{5,7,8,9\},\\ \{5,7,10,12\},$

Find a 3-subset of M intersecting all members of Anon-trivially.

Max Neunhöffer

The Problem What is a Sudoku? How many clues?


Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search

The Result

Backtrack Search in Action

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search

The Result

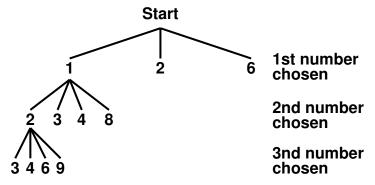
Backtrack Search in Action Start 1 2 6 1st number chosen

8

2nd number chosen

Max Neunhöffer

The Problem What is a Sudoku? How many clues?


Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

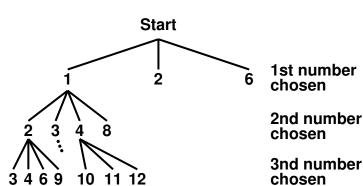
Random Search Finding Unavoidable Sets

The Result

Backtrack Search in Action

Max Neunhöffer

The Problem What is a Sudoku? How many clues?


Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search

all no good

The Result

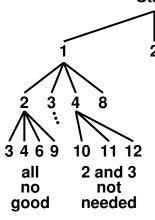
Backtrack Search in Action

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search


Random Search Finding Unavoidable Sets

The Result

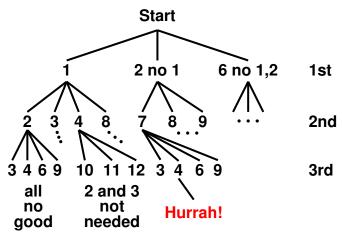
Backtrack Search in Action Start 1 2 6 1st number chosen 2nd number

chosen

3nd number chosen

Is there a Sudoku puzzle with 16 clues? Max Neunhöffer

The Problem What is a Sudoku? How many clues?


Symmetry

Equivalent Sudokus Symmetry Breaking Backtrack Search Unavoidable Sets

The Hitting Set Problem Backtrack Search Random Search Finding Unavoidable Sets

The Result

a Sudoku with 16 es?

Unique solution: {2,4,7}

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Proof that it works

Problem: Hitting Set (resp. Set Covering)

Let *M* be a set and let A_1, \ldots, A_k be subsets of *M*. Find a minimal subset *H* of *M* which contains at least one element of every A_i for $1 \le i \le k$.

We need to prove that every solution *H* is found traversing the tree!

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Proof that it works

Problem: Hitting Set (resp. Set Covering)

Let *M* be a set and let A_1, \ldots, A_k be subsets of *M*. Find a minimal subset *H* of *M* which contains at least one element of every A_i for $1 \le i \le k$.

We need to prove that every solution *H* is found traversing the tree!

Proof: It works!

Let *H* be a solution. Then it intersects all A_i for $1 \le i \le k$. It is found in exactly one leaf of the tree!

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search

The Result

Algorithm: Finding Unavoidable Sets

Definition: Unavoidable Set

Let *S* be a filled Sudoku grid. A subset *U* of the 81 positions is called an unavoidable set, if every set of clues uniquely defining *S* has a number in at least one of the positions in U.

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Algorithm: Finding Unavoidable Sets

Definition: Unavoidable Set

Let *S* be a filled Sudoku grid. A subset *U* of the 81 positions is called an unavoidable set, if every set of clues uniquely defining *S* has a number in at least one of the positions in U.

That is: If we leave out the numbers in the positions U, there is more than one solution.

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Algorithm: Finding Unavoidable Sets

Definition: Unavoidable Set

Let *S* be a filled Sudoku grid. A subset *U* of the 81 positions is called an unavoidable set, if every set of clues uniquely defining *S* has a number in at least one of the positions in U.

That is: If we leave out the numbers in the positions U, there is more than one solution.

Algorithm: Start with a full grid.

Leave out a number in a random position.

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Algorithm: Finding Unavoidable Sets

Definition: Unavoidable Set

Let *S* be a filled Sudoku grid. A subset *U* of the 81 positions is called an unavoidable set, if every set of clues uniquely defining *S* has a number in at least one of the positions in U.

That is: If we leave out the numbers in the positions U, there is more than one solution.

Algorithm: Start with a full grid.

- Leave out a number in a random position.
- Solve Sudoku, if solution still unique, go to step 1.

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Algorithm: Finding Unavoidable Sets

Definition: Unavoidable Set

Let *S* be a filled Sudoku grid. A subset *U* of the 81 positions is called an unavoidable set, if every set of clues uniquely defining *S* has a number in at least one of the positions in U.

That is: If we leave out the numbers in the positions U, there is more than one solution.

Algorithm: Start with a full grid.

- Leave out a number in a random position.
- Solve Sudoku, if solution still unique, go to step 1.
- Try to put back each number to ensure minimality.

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Algorithm: Finding Unavoidable Sets

Definition: Unavoidable Set

Let *S* be a filled Sudoku grid. A subset *U* of the 81 positions is called an unavoidable set, if every set of clues uniquely defining *S* has a number in at least one of the positions in U.

That is: If we leave out the numbers in the positions U, there is more than one solution.

Algorithm: Start with a full grid.

- Leave out a number in a random position.
- Solve Sudoku, if solution still unique, go to step 1.
- Try to put back each number to ensure minimality.

Improvement: Whenever our candidate set C contains an already known unavoidable set U, we remove U from C.

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Performance for our problem

I have run this method on all 49151 solutions of the 17-clue Sudoku puzzles collected by Gordon Royle.

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Performance for our problem

I have run this method on all 49151 solutions of the 17-clue Sudoku puzzles collected by Gordon Royle.

The good news:

• Usually finds 2048 unavoidable sets in ≈ 10 s.

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Performance for our problem

I have run this method on all 49151 solutions of the 17-clue Sudoku puzzles collected by Gordon Royle.

- Usually finds 2048 unavoidable sets in \approx 10 s.
- The Hitting Set Problem has very few solutions.

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Performance for our problem

I have run this method on all 49151 solutions of the 17-clue Sudoku puzzles collected by Gordon Royle.

- Usually finds 2048 unavoidable sets in \approx 10 s.
- The Hitting Set Problem has very few solutions.
- The backtrack search takes between 1 and 120000 s.

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Performance for our problem

I have run this method on all 49151 solutions of the 17-clue Sudoku puzzles collected by Gordon Royle.

- Usually finds 2048 unavoidable sets in \approx 10 s.
- The Hitting Set Problem has very few solutions.
- The backtrack search takes between 1 and 120000 s.
- Used > 3 CPU years in the past 6 weeks.

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Performance for our problem

I have run this method on all 49151 solutions of the 17-clue Sudoku puzzles collected by Gordon Royle.

- Usually finds 2048 unavoidable sets in \approx 10 s.
- The Hitting Set Problem has very few solutions.
- The backtrack search takes between 1 and 120000 s.
- Used > 3 CPU years in the past 6 weeks.
- No 16-clue Sudoku puzzle was found!

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Performance for our problem

I have run this method on all 49151 solutions of the 17-clue Sudoku puzzles collected by Gordon Royle.

The good news:

- Usually finds 2048 unavoidable sets in \approx 10 s.
- The Hitting Set Problem has very few solutions.
- The backtrack search takes between 1 and 120000 s.
- Used > 3 CPU years in the past 6 weeks.
- No 16-clue Sudoku puzzle was found!

The bad news:

If I go on like this with the 5472730538,

Max Neunhöffer

The Problem What is a Sudoku? How many clues?

Symmetry Equivalent Sudokus Symmetry Breaking

Backtrack Search Unavoidable Sets The Hitting Set Problem Backtrack Search

Random Search Finding Unavoidable Sets

The Result

Performance for our problem

I have run this method on all 49151 solutions of the 17-clue Sudoku puzzles collected by Gordon Royle.

The good news:

- Usually finds 2048 unavoidable sets in \approx 10 s.
- The Hitting Set Problem has very few solutions.
- The backtrack search takes between 1 and 120000 s.
- Used > 3 CPU years in the past 6 weeks.
- No 16-clue Sudoku puzzle was found!

The bad news:

If I go on like this with the 5472730538,

I need another 300 000 CPU years.