Iwahori-Hecke-Algebras and James' conjecture 18.10.2007

1 The algebras

Let $n \in \mathbb{N}$, W := sym. group on $\{1, 2, \dots, n\}$, $s_i := (i, i+1)$, $S := \{s_1, s_2, \dots, s_{n-1}\}$.

$$\implies W = \langle s_1, \dots, s_{n-1} \rangle = \langle s_1, \dots, s_{n-1} \mid s_i^2 = \mathrm{id}, s_i s_j = s_j s_i \text{ for } |i-j| \ge 2,$$
$$s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} \text{ for } 1 \le i < n \rangle$$

Call $w = t_1 \cdots t_k$ with $t_i \in S$ "reduced expression" if shortest possible. **Def.:** Let A com. ring, $v \in A$ invertible. $\mathcal{H}_n(A, v) :=$ assoc. A-alg. with generators $\{T_s \mid s \in S\}$ subject to relations:

$$\begin{array}{ll} (T_s-v)(T_s+v^{-1})=0 & \qquad \text{for } s\in S & [v=v\cdot\mathbf{1}\in\mathcal{H}_n(A,v)]\\ T_sT_t=T_tT_s & \qquad \text{for } s,t\in S \text{ and } st=ts \text{ and } s\neq t\\ T_sT_tT_s=T_tT_sT_t & \qquad \text{for } s,t\in S \text{ and } st\neq ts. \end{array}$$

This is called the "Iwahori-Hecke algebra of type A_{n-1} over A with parameter v". **Remark:** For v = 1: $\mathcal{H}_n(A, 1) = AW$ the group algebra.

Theorem (Bourbaki): For $w \in W$, the element $T_w := T_{t_1} \cdot T_{t_2} \cdots T_{t_k}$ for any reduced expression $w = t_1 \cdots t_k$ with $t_i \in S$ is well-defined and $\{T_w \mid w \in W\}$ is an A-basis of $\mathcal{H}_n(A, v)$.

Corollary: If $\varphi : A \to A'$ is a homomorphism of com. rings, then there is a ring homomorphism

$$\begin{array}{rcccc} \hat{\varphi} & : & \mathcal{H}_n(A,v) & \to & \mathcal{H}_n(A',\varphi(v)) \\ & & T_w & \mapsto & T_w & \forall w \in W \\ & a & \mapsto & \varphi(a) & \forall a \in A \subseteq \mathcal{H}_n(A,v) \end{array}$$

This is called a "specialisation", because:

If $A = \mathbb{Z}[x, x^{-1}]$, then $\mathcal{H}_n(\mathbb{Z}[x, x^{-1}], x)$ is called the "generic Iwahori-Hecke-Algebra of type A_{n-1} ". Possible specialisations:

 $\begin{array}{ll} \mathcal{H}_n(\mathbb{Z}[x,x^{-1}],x) \to \mathcal{H}(\mathbb{Q}(x),x) & \text{using } \mathbb{Z}[x,x^{-1}] \subseteq \mathbb{Q}(x) \\ \mathcal{H}_n(\mathbb{Z}[x,x^{-1}],x) \to \mathcal{H}(\mathbb{Q}(\zeta_e),\zeta_e) & \text{using } \mathbb{Z}[x,x^{-1}] \to \mathbb{Q}(\zeta_e), x \mapsto \zeta_e \in \sqrt[e]{1} \subseteq \mathbb{C} \\ \mathcal{H}_n(\mathbb{Z}[x,x^{-1}],x) \to \mathcal{H}(\mathbb{F}_p,u) & \text{using } \mathbb{Z}[x,x^{-1}] \to \mathbb{F}_p, x \mapsto u, z \mapsto z + p\mathbb{Z} \end{array}$

2 Representations and modules

Let A be a field, $\mathcal{H} := \mathcal{H}_n(A, v)$.

Def.: *M* finite dim. *A*-vector space. A **representation** of \mathcal{H} is a homomorphism $\varphi : \mathcal{H} \to \text{End}_A(M)$ of *A*-algebras where $\text{End}_A(M) = \{\alpha : M \to M \mid \alpha \text{ is } A\text{-linear}\}.$

 (M, φ) is called an \mathcal{H} -module. Instead of $\varphi(h)(m)$ for $h \in \mathcal{H}$ and $m \in M$ write $hm = h \cdot m$, i.e.: h(m + m') = hm + hm' and $(h \cdot h')m = h \cdot (h'm)$ for all $h, h' \in \mathcal{H}$ and $m, m' \in M$.

["Representation theory" studies and classifies the modules of an algebra (up to isomorphism)]

Ex.: Let M_1 be a 1-dim. v.s. over A, then $T_s \mapsto v$ (note $\operatorname{End}_A(M_1) \cong A$) is a representation.

Let M_{-1} be a 1-dim. v.s. over A, then $T_s \mapsto -v^{-1}$ is another one.

Def.: M an \mathcal{H} -module. A **submodule** is a sub vector space $N \leq M$, such that $hn \in N \forall h \in \mathcal{H} \forall n \in N$. [\mathcal{H} -invariant space]

M is called **irreducible**, if it has only the submodules 0 and M.

If $N \leq M$ is a submodule, then M/N is an \mathcal{H} -module.

A **composition series** of M is a chain

 $0 = N_0 < N_1 < \dots < N_r = M$

of submodules of M, such that N_i/N_{i-1} is irreducible $\forall 1 \leq i \leq r$.

["Representation theory" begins by classifying the irreducible modules.]

Def.: A partition λ of n is a tuple $(\lambda_1, \ldots, \lambda_k) \in \mathbb{N}^k$ with $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k$ and $\sum_{i=1}^k \lambda_i = n$. Write $\lambda \vdash n$.

Theorem (Richard Dipper, Gordon James 1986)

Define combinatorically for $\lambda \vdash n$ a "Specht-module" S_v^{λ} for $\mathcal{H} = \mathcal{H}_n(A, v)$, equipped with a bilinear form $\beta_v^{\lambda} : S_v^{\lambda} \times S_v^{\lambda} \to A$ such that $\beta_v^{\lambda}(x, y) = \beta_v^{\lambda}(hx, hy)$ for all $h \in \mathcal{H}$ and all $x, y \in S_v^{\lambda}$. Set $\operatorname{rad}(\beta_v^{\lambda}) := \{x \in S_v^{\lambda} \mid \beta_v^{\lambda}(x, y) = 0 \ \forall y \in S_v^{\lambda}\} \le S_v^{\lambda}$. Set $D_v^{\lambda} := S_v^{\lambda}/\operatorname{rad}(\beta_v^{\lambda})$. Let e := e(v) be the least number such that $1 + v + v^2 + \cdots + v^{e-1} = 0$ (or $e := \infty$ if none exists). [this is the multiplicative order of v]

Then: If e > n, then $\operatorname{rad}(\beta_v^{\lambda}) = 0$ and $D_v^{\lambda} = S_v^{\lambda}$ is irreducible. [easy, semisimple case, dimensions known] If $e \le n$, then D_v^{λ} is either irreducible or 0. Up to isomorphism, $\{D_v^{\lambda} \mid \lambda \vdash n, D_v^{\lambda} \ne 0\}$ are all simple modules. [$\lambda = (n)$ and $\lambda = (1^n)$]

3 The conjecture

[Everything solved??? NO!]

Major open problem: For $A = \mathbb{F}_p$, determine $\dim_A(D_v^{\lambda})$ for $e \leq n$.

Equivalent: Determine

 $[S_v^{\lambda}: D_v^{\mu}] := \#$ of occurrences of D_v^{μ} as factor in a composition series $0 = N_0 < N_1 < \cdots < N_r = S_v^{\lambda}$, (i.e. $|\{i \mid N_i/N_{i-1} \cong D_v^{\mu}\}|$, called "decomposition numbers").

Remark: E.g. for $A = \mathbb{F}_p$, $p \le n$, $v = 1 \Longrightarrow e = p$ since $1^0 + 1^1 + 1^2 + \cdots + 1^{p-1} = 0$. \rightarrow modular (i.e. charA = p) representations of the sym. group.

Conjecture (James, 1990) Consider $v \in \mathbb{F}_p$, e := e(v) such that $e \cdot p > n$. Then for $\lambda, \nu \vdash n$:

$$\underbrace{[S_v^{\lambda}: D_v^{\mu}]}_{\text{for } \mathcal{H}_n(\mathbb{F}_p, v)} = \underbrace{[S_{\zeta_e}^{\lambda}: D_{\zeta_e}^{\mu}]}_{\text{for } \mathcal{H}_n(\mathbb{Q}(\zeta_e), \zeta_e)}$$
(these are known by a deep theorem by Ariki)

with $\zeta_e \in \sqrt[e]{1}\mathbb{C}$ primitive, i.e. decomposition numbers **depend on** e(v) but **not on** p **and** v! [\rightarrow proved in some cases]

E.g.: \exists limit N such that it holds for all p > N. But no explicit limit known!

4 An equivalent statement

Def.: A field, (Z, +) a totally ordered abelian group. Then $\nu : A \to Z \cup \{\infty\}$ is called a **valuation**, if the following hold:

 $\nu(a) = \infty \iff a = 0$ $\nu(a \cdot b) = \nu(a) + \nu(b) \ \forall a, b \in A$ $\nu(a + b) \ge \min\{\nu(a), \nu(b)\}$

Remark: It follows, that $R := \{a \in A \mid \nu(a) \ge 0\}$ is a subring of A with unique maximal ideal $J := \{a \in A \mid \nu(a) > 0\}$, since $\nu(1) = 0$ and thus $\nu(a^{-1}) = -\nu(a)$.

R is a valuation ring in *A*, which means: $\forall 0 \neq a \in A$ we have: *a* or a^{-1} or both lie in *R*.

Ex.: Let $A := \mathbb{Q}$, p a prime. Define for $a \in \mathbb{Z} \setminus \{0\}$: $\nu(a) := k$ if $p^k \mid a$ but $p^{k+1} \nmid a$. For $a/b \in \mathbb{Q}$ set $\nu(a/b) := \nu(a) - \nu(b)$.

This gives a valuation on \mathbb{Q} with values in $\mathbb{Z} \cup \{\infty\}$.

Valuation ring $R = \{a/b \mid \gcd(a, b) = 1 \text{ and } p \nmid b\}$ max. ideal $J = \{ap/b \mid \gcd(a, b) = 1 \text{ and } p \nmid b\}$ factor ring $R/J \cong \mathbb{F}_p$

Def.: Call an idempotent $f^2 = f$ **primitive** iff it cannot be written $f = f_1 + f_2$ with two orthogonal idempotents $f_1^2 = f_1$ and $f_2^2 = f_2$ and $f_1 f_2 = 0 = f_2 f_1$.

Assume the situation of James' conjecture: $v \in \mathbb{F}_p$, e = e(v), $e \cdot p > n$ and $\lambda, \mu \vdash n$. I have defined two valuations

 $u_1 : \mathbb{Q}(x) \to \mathbb{Z} \cup \{\infty\} \quad \text{and} \quad \nu_2 : \mathbb{Q}(x) \to (\mathbb{Z} \times \mathbb{Z}) \cup \{\infty\}$ with valuation rings

 $R_i = \{f \in \mathbb{Q}(x) \mid \nu_i(f) \ge 0\} \text{ and maximal ideals } J_i := \{f \in \mathbb{Q}(x) \mid \nu_i(f) > 0\}$ such that $R_1/J_1 \cong \mathbb{Q}(\zeta_e)$ and $R_2/J_2 \cong \mathbb{F}_p$. Then: $R_2 \subseteq R_1 \subseteq \mathbb{Q}(x)$ and thus $\mathcal{H}_n(R_2, x)$ embeds into $\mathcal{H}_n(R_1, x)$.

Theorem (N, 2003)

James' conjecture holds if and only iff every primitive idempotent of $\mathcal{H}_n(R_2, x)$ is primitive as idempotent of $\mathcal{H}_n(R_1, x)$.