## LMS Short Course on Computational Group Theory <br> Lab session 3 <br> Using group libraries and conducting searches

1. How many non-abelian groups of order 24 are there? (Of course, with this formulation we always mean "up to isomorphism".)
Hint : You want to use the small groups library, $\rightarrow$ ?NumberSmallGroups, $\rightarrow$ ?AllSmallGroups, $\rightarrow$ ? IsAbelian
2. How many non-abelian groups of order 128 are there?

Compute the average of the sizes of their centres.
Hint 1: To automate the counting you can use $\rightarrow$ ? List and $\rightarrow$ ? Collected or use $\rightarrow$ ?Filtered to get them all
Hint 2: For the centres the $\rightarrow$ ? arrow notation could be convenient
3. What ID does the group generated by the three permutations

$$
(2,4,6,8,10),(1,9)(2,8)(3,7)(4,6) \text { and }(1,6)(2,7)(3,8)(4,9)(5,10)
$$

have?
Hint : $\rightarrow$ ? IdGroup, $\rightarrow$ ?SmallGroup
4. Find all composition series of all non-solvable groups of order 120 .

Hint 1: You can avoid making all small groups of order 120 and then Filtered by using the more sophisticated syntax of $\rightarrow$ ?AllSmallGroups
Hint 2: Simply compute all normal subgroups of them using $\rightarrow$ ?NormalSubgroups
5. How many elements of order 3 do all groups of order 48 have together? (Of course, we mean to take one group of each isomorphism type.)
Hint 1: Fetch them all using AllSmallGroups, for each of them, ask for all elements $(\rightarrow$ ?Elements) and let GAP count.
Hint 2: If you have a list $L$ of groups, you can use $a \rightarrow$ ? for loop to run through all of them like this:

```
for g in L do
    do stuff with g
od;
```

Hint 3: The same technique can be used to run through a list of elements. Use $\rightarrow$ ? if to decide, whether or not an element has order 3 as in

```
if Order(x) = 3 then
    increase a counter
fi;
```

6. Show that the Sylow 2-subgroups of the Mathieu group $\mathrm{M}_{24}$ and the sporadic simple Held group He are isomorphic.
Hint 1: $\rightarrow$ ?MathieuGroup
Hint 2: Use the AtlasRep package and $\rightarrow$ ?At lasGroup to fetch generators of He from the internet.
Hint 3: Use $\rightarrow$ ?SmallerDegreePermutationRepresentation for the Sylow 2-subgroup of He
Hint 4: Use $\rightarrow$ ? IsomorphismGroups
7. Find the group with the fewest elements that is non-abelian, has trivial center and contains an element $a$ of order 2 and an element $b$ of order 3 such that $a b$ has order 5 .
