LMS Short Course on Computational Group Theory

Lab session 3

Using group libraries and conducting searches

1. How many non-abelian groups of order 24 are there? (Of course, with this formulation we always mean "up to isomorphism".)

Hint : You want to use the small groups library, \rightarrow ?NumberSmallGroups, \rightarrow ?AllSmallGroups, \rightarrow ?IsAbelian

2. How many non-abelian groups of order 128 are there?

Compute the average of the sizes of their centres.

Hint 1: To automate the counting you can use \rightarrow ?List and \rightarrow ?Collected or use \rightarrow ?Filtered to get them all

Hint 2: For the centres the \rightarrow ?arrow notation could be convenient

3. What ID does the group generated by the three permutations

```
(2,4,6,8,10), (1,9)(2,8)(3,7)(4,6) and (1,6)(2,7)(3,8)(4,9)(5,10)
```

have?

Hint: \rightarrow ?IdGroup, \rightarrow ?SmallGroup

4. Find all composition series of all non-solvable groups of order 120.

Hint 1: You can avoid making all small groups of order 120 and then Filtered by using the more sophisticated syntax of \rightarrow ?AllSmallGroups

Hint 2: Simply compute all normal subgroups of them using \rightarrow ?NormalSubgroups

5. How many elements of order 3 do all groups of order 48 have together? (Of course, we mean to take one group of each isomorphism type.)

Hint 1: Fetch them all using AllSmallGroups, for each of them, ask for all elements (→ ?Elements) and let GAP count.

Hint 2: If you have a list L of groups, you can use $a \to ?for$ loop to run through all of them like this:

```
for g in L do do stuff with g
```

Hint 3: The same technique can be used to run through a list of elements. Use \rightarrow ?if to decide, whether or not an element has order 3 as in

```
if Order(x) = 3 then
    increase a counter
fi;
```

6. Show that the Sylow 2-subgroups of the Mathieu group M_{24} and the sporadic simple Held group He are isomorphic.

Hint 1: → ?MathieuGroup

Hint 2: Use the AtlasRep package and \rightarrow ?AtlasGroup to fetch generators of He from the internet.

Hint 3: Use \rightarrow ?SmallerDegreePermutationRepresentation for the Sylow 2-subgroup of He

Hint 4: Use → ?IsomorphismGroups

7. Find the group with the fewest elements that is non-abelian, has trivial center and contains an element a of order 2 and an element b of order 3 such that ab has order 5.