LMS Short Course on Computational Group Theory
 Lab session 4
 Finitely presented groups

1. Make in GAP a free group F on two generators a and b. Assign the generators to two variables a and b and produce a few words in F. See how inverses are cancelled automatically.
Hint 1: Use FreeGroup("a","b");
Hint 2: Use GeneratorsOfGroup.
2. Give the presentation

$$
G:=\left\langle a, b \mid a^{2}, b^{3},(a b)^{11},[a, b]^{6},\left(a b a b a b^{-1}\right)^{6}\right\rangle
$$

to GAP. Find the order of G.
Hint 1: Type in the relations in a list R and use the F / R operation to form G.
Hint 2: Simply try the Size command.
3. Compute an isomorphism to a permutation group.

Hint 1: \rightarrow ? IsomorphismPermGroup and \rightarrow ? Image
4. Perform a coset enumeration of

$$
H:=\left\langle a, b \mid a^{2}, b^{3}, a b a b\right\rangle
$$

on the cosets of the trivial group.
Hint 1: \rightarrow ?TrivialSubgroup and \rightarrow ? Coset Table.
5. Perform a coset enumeration of H on the cosets of the group generated by a. Derive from this a group homomorphism into a symmetric group (without using FactorCosetAction).
Hint 1: \rightarrow ?CosetTable and \rightarrow ?PermList
6. Enter the group

$$
K:=\left\langle s, t \mid s^{3}, t^{2}\right\rangle
$$

into GAP and determine its size.
Hint 1: Hit "Ctrl-C" on the keyboard to interrupt GAP.
Hint 2: Compute the \rightarrow ?AbelianInvariants.
Hint 3: Use \rightarrow ?LowIndexSubgroupsFpGroup and then AbelianInvariants for some of the subgroups.
7. Investigate the Fibonacci group

$$
F(5):=\langle a, b, c, d, e \mid a b=c, b c=d, c d=e, d e=a, e a=b\rangle
$$

8. Investigate the Fibonacci group

$$
F(6):=\langle a, b, c, d, e, f \mid a b=c, b c=d, c d=e, d e=f, e f=a, f a=b\rangle
$$

9. Use the following program to make an FP group:
```
n:=10; f:=FreeGroup(10); g:=GeneratorsOfGroup(f); rels:=[];
for i in [1..n] do Add(rels,g[i]^2); od;
for i in [1..n-2] do for j in [i+2..n] do
    Add(rels,Comm(g[i],g[j]));
od; od;
for i in [1..n-1] do Add(rels,(g[i]*g[i+1])^3); od;
G := f/rels;
```

Determine the order of G.
Hint 1: Try to enumerate the cosets of a subgroup of G.
Hint 2: Once you have the group homomorphism, compute its \rightarrow ?Kernel.

