HONOURS MSci AND HONOURS MMath EXAMINATION MATHEMATICS AND STATISTICS Paper MT5826 : Finite Fields May 2006

Time allowed : Two and a half hours

Attempt ALL FOUR questions

1.	(a) Define the <i>characteristic</i> of a ring R .	[2]
	(b) Prove that a ring $R \neq \{0\}$ of positive characteristic with an identity an zero divisors must have prime characteristic.	d no [3]
	(c) Let F be a field. Define what it means for a polynomial $p \in F[x]$ t <i>irreducible over</i> F.	o be [1]
	(d) Find all irreducible polynomials over \mathbb{F}_2 of degree 4.	[3]
	(e) State (giving justification) whether the following are fields:	
	(i) $\mathbb{F}_2[x]/(x^4 + x + 1);$	
	(ii) $\mathbb{F}_5[x]/(x^4 + x + 1)$.	[3]
	(f) Calculate the multiplicative order of $x + (x^4 + x^3 + x^2 + x + 1)$ in the $\mathbb{F}_2[x]/(x^4 + x^3 + x^2 + x + 1)$.	field [3]

2.

(a	.) Define (i) a <i>prime</i>	field; (ii)) the prime	<i>subfield</i> of a	field F .	2	
----	-------------	-------------------	-------------	-------------	----------------------	-------------	---	--

(b) Prove that the prime subfield of a field F is a prime field. [2]

[See over

(c) Let F, K be fields. Let $\alpha \in F$ be algebraic over K and let g be the minimal polynomial of α over K. Prove that $K(\alpha)$ is isomorphic to K[x]/(g). [4]

(d) Consider the irreducible polynomials $f(x) = x^2 + 1$ and $g(x) = x^2 - x - 1$ in $\mathbb{F}_3[x]$.

(i) Let $L = \mathbb{F}_3[x]/(f)$. Show that L is the splitting field for f over \mathbb{F}_3 .

(ii) Let $\alpha \in L$ be a root of f. By considering $\alpha - 1$ (or otherwise) show that L is also a splitting field for g over \mathbb{F}_3 . [5]

(e) State in full (without proof) the theorem asserting the 'Existence and Uniqueness of Finite Fields'. [2]

3.

(a) Define a *primitive element* of a finite field \mathbb{F}_q . [1]

(b) (i) How many primitive elements does \mathbb{F}_4 contain?

(ii) Expressing \mathbb{F}_4 as $\mathbb{F}_2(\theta)$ for a suitable θ , list the primitive element(s) of \mathbb{F}_4 . [2]

Let K be a field of characteristic p, and $n \in \mathbb{N}$ with $p \nmid n$.

(c) Define the *nth cyclotomic field* $K^{(n)}$ and a *primitive nth root of unity* over K. [2]

As usual, let

$$Q_n(x) = \prod_{\substack{s=1\\(s,n)=1}}^n (x - \zeta^s)$$

where ζ is a primitive *n*th root of unity over *K*.

- (d) Prove
- (i) $x^n 1 = \prod_{d|n} Q_d(x);$
- (ii) $Q_n(x) = \prod_{d|n} (x^d 1)^{\mu(n/d)}$, where μ is the Moebius function.

(You may assert, without proof, the Moebius Inversion Formula). [4]

(e) Using the fact that \mathbb{F}_8 is the 7th cyclotomic field over \mathbb{F}_2 , find a primitive element of \mathbb{F}_8 and express \mathbb{F}_8 in terms of this primitive element. [4]

(f) If d|n with $1 \le d \le n$, prove that $Q_n(x)$ divides $\frac{x^n-1}{x^d-1}$ whenever $Q_n(x)$ is defined. [2]

- 4. (a) Prove that if F is a finite field containing a subfield K with q elements, then F has q^m elements where m = [F : K]. [3]
 - (b) Define the *conjugates* of $\alpha \in \mathbb{F}_{q^m}$ with respect to \mathbb{F}_q . [1]

(c) Let $\alpha \in \mathbb{F}_{16}$ be a root of $f(x) = x^4 + x + 1 \in \mathbb{F}_2[x]$. Calculate the conjugates of α with respect to (i) \mathbb{F}_2 (ii) \mathbb{F}_4 . [3]

(d) Let F be a finite extension of a finite field K, and $\alpha \in F$. Define the *trace* $\operatorname{Tr}_{F/K}(\alpha)$ and the norm $N_{F/K}(\alpha)$ of α over K. [2]

(e) Let $F = \mathbb{F}_{q^m}$ be a finite extension of $K = \mathbb{F}_q$.

(i) Suppose $\operatorname{Tr}_{F/K}(\alpha) = 0$ for some $\alpha \in F$, and let β be a root of $x^q - x - \alpha$ in an extension field of F. Prove that, in fact, $\beta \in F$.

(ii) Hence prove that (for $\alpha \in F$) $\operatorname{Tr}_{F/K}(\alpha) = 0$ if and only if $\alpha = \beta^q - \beta$ for some $\beta \in F$. [5]

(f) State the Primitive Normal Basis Theorem.

[1]