HONOURS MSci AND HONOURS MMath EXAMINATION MATHEMATICS AND STATISTICS
 Paper MT5826 : Finite Fields

May 2006
Time allowed : Two and a half hours

Attempt ALL FOUR questions

1. (a) Define the characteristic of a ring R.
(b) Prove that a ring $R \neq\{0\}$ of positive characteristic with an identity and no zero divisors must have prime characteristic.
(c) Let F be a field. Define what it means for a polynomial $p \in F[x]$ to be irreducible over F.
(d) Find all irreducible polynomials over \mathbb{F}_{2} of degree 4.
(e) State (giving justification) whether the following are fields:
(i) $\mathbb{F}_{2}[x] /\left(x^{4}+x+1\right)$;
(ii) $\mathbb{F}_{5}[x] /\left(x^{4}+x+1\right)$.
(f) Calculate the multiplicative order of $x+\left(x^{4}+x^{3}+x^{2}+x+1\right)$ in the field $\mathbb{F}_{2}[x] /\left(x^{4}+x^{3}+x^{2}+x+1\right)$.
2. (a) Define (i) a prime field; (ii) the prime subfield of a field F.
(b) Prove that the prime subfield of a field F is a prime field.
(c) Let F, K be fields. Let $\alpha \in F$ be algebraic over K and let g be the minimal polynomial of α over K. Prove that $K(\alpha)$ is isomorphic to $K[x] /(g)$.
(d) Consider the irreducible polynomials $f(x)=x^{2}+1$ and $g(x)=x^{2}-x-1$ in $\mathbb{F}_{3}[x]$.
(i) Let $L=\mathbb{F}_{3}[x] /(f)$. Show that L is the splitting field for f over \mathbb{F}_{3}.
(ii) Let $\alpha \in L$ be a root of f. By considering $\alpha-1$ (or otherwise) show that L is also a splitting field for g over \mathbb{F}_{3}.
(e) State in full (without proof) the theorem asserting the 'Existence and Uniqueness of Finite Fields'.
[2]
3. (a) Define a primitive element of a finite field \mathbb{F}_{q}.
(b) (i) How many primitive elements does \mathbb{F}_{4} contain?
(ii) Expressing \mathbb{F}_{4} as $\mathbb{F}_{2}(\theta)$ for a suitable θ, list the primitive element(s) of \mathbb{F}_{4}. [2]

Let K be a field of characteristic p, and $n \in \mathbb{N}$ with $p \nmid n$.
(c) Define the nth cyclotomic field $K^{(n)}$ and a primitive nth root of unity over K.

As usual, let

$$
Q_{n}(x)=\prod_{\substack{s=1 \\(s, n)=1}}^{n}\left(x-\zeta^{s}\right)
$$

where ζ is a primitive nth root of unity over K.
(d) Prove
(i) $x^{n}-1=\prod_{d \mid n} Q_{d}(x)$;
(ii) $Q_{n}(x)=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu(n / d)}$, where μ is the Moebius function.
(You may assert, without proof, the Moebius Inversion Formula).
(e) Using the fact that \mathbb{F}_{8} is the 7 th cyclotomic field over \mathbb{F}_{2}, find a primitive element of \mathbb{F}_{8} and express \mathbb{F}_{8} in terms of this primitive element.
(f) If $d \mid n$ with $1 \leq d \leq n$, prove that $Q_{n}(x)$ divides $\frac{x^{n}-1}{x^{d}-1}$ whenever $Q_{n}(x)$ is defined.
4. (a) Prove that if F is a finite field containing a subfield K with q elements, then F has q^{m} elements where $m=[F: K]$.
(b) Define the conjugates of $\alpha \in \mathbb{F}_{q^{m}}$ with respect to \mathbb{F}_{q}.
(c) Let $\alpha \in \mathbb{F}_{16}$ be a root of $f(x)=x^{4}+x+1 \in \mathbb{F}_{2}[x]$. Calculate the conjugates of α with respect to (i) \mathbb{F}_{2} (ii) \mathbb{F}_{4}.
(d) Let F be a finite extension of a finite field K, and $\alpha \in F$. Define the trace $\operatorname{Tr}_{F / K}(\alpha)$ and the norm $N_{F / K}(\alpha)$ of α over K.
(e) Let $F=\mathbb{F}_{q^{m}}$ be a finite extension of $K=\mathbb{F}_{q}$.
(i) Suppose $\operatorname{Tr}_{F / K}(\alpha)=0$ for some $\alpha \in F$, and let β be a root of $x^{q}-x-\alpha$ in an extension field of F. Prove that, in fact, $\beta \in F$.
(ii) Hence prove that (for $\alpha \in F) \operatorname{Tr}_{F / K}(\alpha)=0$ if and only if $\alpha=\beta^{q}-\beta$ for some $\beta \in F$.
(f) State the Primitive Normal Basis Theorem.

