HONOURS MSci AND HONOURS MMath EXAMINATION MATHEMATICS AND STATISTICS
 Paper MT5826 : Finite Fields
 May 2008

Time allowed : Two and a half hours

Attempt ALL FOUR questions

1. (a) Define the term principal ideal domain.
(b) Prove that for a field F, the polynomial ring $F[x]$ is a principal ideal domain.
(c) Let F be a field. Define what it means for a polynomial $p \in F[x]$ to be reducible over F.
(d) Find one irreducible polynomial over \mathbb{F}_{3} of degree 4.
(e) State (giving justification) whether the following are fields:
(i) $\mathbb{F}_{2}[x] /\left(x^{4}+x^{2}+x+1\right) ; \quad$ (ii) $\mathbb{F}_{5}[x] /\left(x^{3}+x+1\right)$.
(f) Calculate the multiplicative order of the element $x^{2}+\left(x^{3}+x+1\right)$ in the field $\mathbb{F}_{2}[x] /\left(x^{3}+x+1\right)$.
(a) Let F be a field and $f \in F[x]$ a polynomial. Prove that $\alpha \in F$ is a root of f if and only if $x-\alpha$ divides f.
(b) Prove: if K is a field of characteristic zero, $f \in K[x]$ is a non-zero irreducible polynomial and F is any extension field of K, then f has no multiple roots in F. [3]
(c) Let F, K be fields. Let $\alpha \in F$ be algebraic over K and let g be the minimal polynomial of α over K. Prove that $K[x] /(g)$ is isomorphic to $K(\alpha)$.
(d) Consider the irreducible polynomials $f(x)=x^{2}+x+1$ and $g(x)=x^{2}+x+2$ in $\mathbb{F}_{5}[x]$. Let $L=\mathbb{F}_{5}[x] /(f)$.
(i) Show that L is the splitting field for f over \mathbb{F}_{5}.
(ii) Show that L is also a splitting field for g over \mathbb{F}_{5}. Find a root of g in L. [4]
(e) State in full (without proof) the theorem about the 'Subfield Criterion for Finite Fields'.
2. (a) Define a primitive element of a finite field \mathbb{F}_{q}.
(b) How many elements that are not primitive does \mathbb{F}_{9} contain?
(c) Express all primitive elements of \mathbb{F}_{9} as powers of one primitive element $\zeta \in \mathbb{F}_{9}$.
(d) State the Moebius Inversion Formula (additive version only!).
(e) Use the Moebius Inversion Formula to derive a formula for the number $N_{q}(d)$ of monic irreducible polynomials in $\mathbb{F}_{q}[x]$ of degree d. You can use the following formula without proof:

$$
\begin{equation*}
q^{n}=\sum_{d \mid n} d N_{q}(d) \quad \text { for all } n \in \mathbb{N} \tag{2}
\end{equation*}
$$

(f) How many irreducible polynomials of degree 4 are there in $\mathbb{F}_{9}[x]$? (Note that in this part (f) we want to count not only the monic ones but all irreducible polynomials!) Prove your answer!
4. (a) Prove that if F is a finite field containing a subfield K with q elements, then F has q^{m} elements where $m=[F: K]$.
(b) Let $q=p^{k}$ for some prime p and some $k \in \mathbb{N}$ that is even. Define the conjugates of $\alpha \in \mathbb{F}_{q}$ with respect to $\mathbb{F}_{p^{2}}$.
(c) Let $\alpha \in \mathbb{F}_{27}$ be a root of $f(x)=x^{3}+2 x+1 \in \mathbb{F}_{3}[x]$. Calculate the conjugates of α with respect to \mathbb{F}_{3}. Express them as polynomials in α of degree less than 3. [3]
(d) Let F be a finite extension of a finite field K, and $\alpha \in F$. Define the trace $\operatorname{Tr}_{F / K}(\alpha)$ and the norm $N_{F / K}(\alpha)$ of α over K.
(e) Prove that for the situation in (d) the following holds: $N_{F / K}(\alpha)=0$ if and only if $\alpha=0$.

