UNIVERSITY OF ST ANDREWS
 MT5826 Finite Fields
 Tutorial Sheet: Chapter 1

1. For the equivalence relation congruence modulo n on \mathbb{Z}, show that
(a) the binary operation

$$
[a]+[b]=[a+b]
$$

is well-defined, i.e. does not depend on our choice of representatives;
(b) the set $\{[0],[1], \ldots,[n-1]\}$ forms a group under this operation;
(c) this group is cyclic with [1] as a generator.
2. Let ϕ denote Euler's phi function: for $n \in \mathbb{N}, \phi(n)$ is the number of integers k with $1 \leq k \leq n$ and $\operatorname{gcd}(k, n)=1$. Prove that
(a) For $n>1, \phi(n)=n-1 \Leftrightarrow n$ is prime.
(b) If p is prime and $k>0$, then

$$
\phi\left(p^{k}\right)=p^{k}-p^{k-1}
$$

(c) $\quad \phi(m n)=\phi(m) \phi(n)$ if $\operatorname{gcd}(m, n)=1$.
(d) If n has prime factorization $p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}$, then

$$
\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{r}}\right)
$$

3. Let $G=\langle a\rangle$ be a group of finite order m. Prove that
(a) for any positive divisor d of m, G contains one and only one subgroup of index d;
(b) for any positive divisor f of m, G contains one and only one subgroup of order f.
(Hint: this is part (iii) of Theorem 1.13 of the notes; you may wish to use parts (i) and (ii) in your proof.)
4. (a) Show that $(\mathbb{Z},+, *)$ is an integral domain but not a field.
(b) Show that the set of 2×2 matrices with entries from \mathbb{R}, with matrix addition and multiplication, form a non-commutative ring with an identity.
(c) Show that \mathbb{Z}_{n}, with operations $[a]+[b]=[a+b]$ and $[a][b]=[a b]$, is a commutative ring with an identity.
5. For the following statements, decide whether each is True/False and give a proof or counterexample as appropriate: (a) \mathbb{Z} is a subring of \mathbb{Q}; (b) \mathbb{Z} is an ideal of \mathbb{Q}.
6. Prove the assertion in Example 2.7 of the notes that \mathbb{Z} is a principal ideal domain. You may wish to use the following proof outline:

- Either $I=\{0\}$, or
- $I \neq\{0\}$. In this case, I contains both positive and negative elements. Let m be the least positive element of I.
Show that $I=(m)$. (Hint: Consider $a \in I$ and use the Division Algorithm to write $a=m q+r$.)

7. Show that $\mathbb{Z} /(n)$ is not a field when n is composite.
8. Write out the addition and multiplication tables for \mathbb{F}_{7}.
9. Prove the fact (needed in the proof of Freshmen's Exponentiation) that p is a divisor of $\binom{p}{i}$, for any $i \in \mathbb{Z}$ with $0<i<p$.
10. Find all irreducible polynomials over \mathbb{F}_{2} of degree 4 .
11. Each residue class $g+(f)$ of $F[x] /(f)$ contains at least one representative $r \in F[x]$ with $\operatorname{deg} r<\operatorname{deg} f$, namely the remainder when g is divided by f. Prove that this representative is unique.
12. (a) State (without considering elements) whether the following are fields: (i) $\mathbb{F}_{3}[x] /\left(x^{3}-x-1\right)$; (ii) $\mathbb{F}_{5} /\left(x^{3}-x^{2}+x-1\right)$.
(b) Is $\mathbb{F}_{3}[x] /\left(x^{3}-x-1\right) \cong \mathbb{F}_{3}[x] /\left(x^{3}-x+1\right)$?
(c) What is the multiplicative order of $x+\left(x^{3}-x-1\right)$ in $\mathbb{F}_{3}[x] /\left(x^{3}-\right.$ $x-1)$? (Hint: it must divide $3^{3}-1$.)
13. Write out addition and multiplication tables for
(a) $\mathbb{F}_{3}[x] /(f)$ where $f(x)=x^{2}+1$;
(b) $\quad \mathbb{F}_{2}[x] /(f)$ where $f(x)=x^{3}+1$.

In each case decide whether or not it is a field, giving justification.
14. Let $a \in F$, where F is a field. Prove that
(a) If a is a multiple root of $f \in F[x]$, then it is a root of both f and its derivative f^{\prime}.
(b) If a is a root of both f and its derivative f^{\prime}, then it must be a multiple root of f.

