UNIVERSITY OF ST ANDREWS MT5826 Finite Fields Tutorial Sheet: Chapter 2

- 1. Prove that the prime subfield of a field F is a prime field.
- **2.** Give an example of an element which is algebraic over \mathbb{R} but not over \mathbb{Q} .
- **3.** Verify that, given $\alpha \in F$ which is algebraic over some subfield K of F, the set

$$J = \{ f \in K[x] : f(\alpha) = 0 \}$$

is a (non-zero) ideal of F[x].

- 4. Give the minimal polynomial and degree of
 - (a) $\sqrt{2}$ over \mathbb{Q} ;
 - (b) $\sqrt{2}$ over \mathbb{R} ;
 - (c) i+1 over \mathbb{R} ;
 - (d) $a + b\sqrt{2}$ over \mathbb{Q} , for arbitrary $a, b \in \mathbb{Q}$.
- 5. Prove that if $\{u_1, \ldots, u_m\}$ spans E over F and if u_m is a linear combination of u_1, \ldots, u_{m-1} , then $\{u_1, \ldots, u_{m-1}\}$ spans E over F.
- 6. Show that the sets
 - (a) $\{1, i, \sqrt{3}, i\sqrt{3}\};$
 - (b) $\{1, \sqrt{2}, \sqrt{3}, \sqrt{5}\}$

are linearly independent over \mathbb{Q} .

- 7. Let K be a field. In the notes, Theorem 5.7 says that every finite extension of K is algebraic over K. Define the *algebraic numbers* A to be the set of all those complex numbers which are algebraic over \mathbb{Q} . Show that the converse of Theorem 5.7 is false, by proving that \mathbb{A}/\mathbb{Q} is an algebraic extension which is not finite.
- 8. Let $\alpha = \sqrt[5]{7} \in \mathbb{R}$. Let $K = \mathbb{Q}(\alpha)$.
 - (a) What is $[K : \mathbb{Q}]$?
 - (b) Give a basis for K over \mathbb{Q} .
 - (c) Describe the elements of K.

- **9.** Consider the polynomial $x^3 + x + 1 \in \mathbb{F}_2[x]$.
 - (a) List the elements of $L = \mathbb{F}_2(\theta)$, where θ is a root of f.
 - (b) Write out the multiplication table for L.
 - (c) Determine the three linear factors of $x^3 + x + 1$ in L[x].
 - (d) Have you already met the field L, on Tutorial Sheet 1? If so, where did it appear?
- 10. Give the splitting field over \mathbb{Q} , and its degree over \mathbb{Q} , for the following polynomials:
 - (a) $x^2 + 6 \in \mathbb{Q}[x];$
 - (b) $x^3 5 \in \mathbb{Q}[x].$
- **11.** Let $f(x) = x^2 + 1$, $g(x) = x^2 + x 1 \in \mathbb{F}_3[x]$.
 - (a) Show that f and g are irreducible over \mathbb{F}_3 .
 - (b) Let $L = \mathbb{F}_3[x]/(f)$. Show that L is the splitting field for f over \mathbb{F}_3 .
 - (c) Let $\alpha \in L$ be a root of f. By considering $\alpha + 1$ (or otherwise), show that L is also a splitting field for g over \mathbb{F}_3 .