UNIVERSITY OF ST ANDREWS MT5826 Finite Fields Tutorial Sheet: Chapter 2

1. Prove that the prime subfield of a field F is a prime field.
2. Give an example of an element which is algebraic over \mathbb{R} but not over \mathbb{Q}.
3. Verify that, given $\alpha \in F$ which is algebraic over some subfield K of F, the set

$$
J=\{f \in K[x]: f(\alpha)=0\}
$$

is a (non-zero) ideal of $F[x]$.
4. Give the minimal polynomial and degree of
(a) $\sqrt{2}$ over \mathbb{Q};
(b) $\sqrt{2}$ over \mathbb{R};
(c) $i+1$ over \mathbb{R};
(d) $a+b \sqrt{2}$ over \mathbb{Q}, for arbitrary $a, b \in \mathbb{Q}$.
5. Prove that if $\left\{u_{1}, \ldots, u_{m}\right\}$ spans E over F and if u_{m} is a linear combination of u_{1}, \ldots, u_{m-1}, then $\left\{u_{1}, \ldots, u_{m-1}\right\}$ spans E over F.
6. Show that the sets
(a) $\{1, i, \sqrt{3}, i \sqrt{3}\}$;
(b) $\{1, \sqrt{2}, \sqrt{3}, \sqrt{5}\}$
are linearly independent over \mathbb{Q}.
7. Let K be a field. In the notes, Theorem 5.7 says that every finite extension of K is algebraic over K. Define the algebraic numbers \mathbb{A} to be the set of all those complex numbers which are algebraic over \mathbb{Q}.
Show that the converse of Theorem 5.7 is false, by proving that \mathbb{A} / \mathbb{Q} is an algebraic extension which is not finite.
8. Let $\alpha=\sqrt[5]{7} \in \mathbb{R}$. Let $K=\mathbb{Q}(\alpha)$.
(a) What is $[K: \mathbb{Q}]$?
(b) Give a basis for K over \mathbb{Q}.
(c) Describe the elements of K.
9. Consider the polynomial $x^{3}+x+1 \in \mathbb{F}_{2}[x]$.
(a) List the elements of $L=\mathbb{F}_{2}(\theta)$, where θ is a root of f.
(b) Write out the multiplication table for L.
(c) Determine the three linear factors of $x^{3}+x+1$ in $L[x]$.
(d) Have you already met the field L, on Tutorial Sheet 1? If so, where did it appear?
10. Give the splitting field over \mathbb{Q}, and its degree over \mathbb{Q}, for the following polynomials:
(a) $x^{2}+6 \in \mathbb{Q}[x]$;
(b) $x^{3}-5 \in \mathbb{Q}[x]$.
11. Let $f(x)=x^{2}+1, g(x)=x^{2}+x-1 \in \mathbb{F}_{3}[x]$.
(a) Show that f and g are irreducible over \mathbb{F}_{3}.
(b) Let $L=\mathbb{F}_{3}[x] /(f)$. Show that L is the splitting field for f over \mathbb{F}_{3}.
(c) Let $\alpha \in L$ be a root of f. By considering $\alpha+1$ (or otherwise), show that L is also a splitting field for g over \mathbb{F}_{3}.

