UNIVERSITY OF ST ANDREWS MT5826 Finite Fields Tutorial Sheet: Chapter 3

1. Let F be a field of eight elements. Does F possess a subfield isomorphic to a field of four elements? If yes, exhibit such a subfield; if no, explain why not.
2. Determine the subfields of the finite field $\mathbb{F}_{3^{42}}$ and draw the corresponding subfield diagram.
3. (a) Express \mathbb{F}_{9} as $\mathbb{F}_{3}(\theta)$ for an appropriate θ. List the elements of \mathbb{F}_{9}.
(b) How many primitive elements does \mathbb{F}_{9} have?
(c) Is the θ you chose a primitive element?
4. Let F be a field. Prove that if

$$
a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in F[x]
$$

is irreducible, then so is

$$
a_{n}+a_{n-1} x+\cdots+a_{0} x^{n} .
$$

5. Let μ be the Moebius function. Prove that $\mu(m n)=\mu(m) \mu(n)$ if $\operatorname{gcd}(m, n)=1$.
6. Prove the reverse implication of the Moebius Inversion Formula (i.e. the direction omitted in the proof given in the notes).
7. How many monic irreducible polynomials in $\mathbb{F}_{q}[x]$ are there of degree (a)18? (b)20?
8. What is the product of all monic irreducible
(a) quartics in $\mathbb{F}_{3}[x]$;
(b) polynomials of degree 6 in $\mathbb{F}_{2}[x]$?
