UNIVERSITY OF ST ANDREWS MT5826 Finite Fields Tutorial Sheet: Chapter 3

- 1. Let F be a field of eight elements. Does F possess a subfield isomorphic to a field of four elements? If yes, exhibit such a subfield; if no, explain why not.
- 2. Determine the subfields of the finite field $\mathbb{F}_{3^{42}}$ and draw the corresponding subfield diagram.
- **3.** (a) Express \mathbb{F}_9 as $\mathbb{F}_3(\theta)$ for an appropriate θ . List the elements of \mathbb{F}_9 .
 - (b) How many primitive elements does \mathbb{F}_9 have?
 - (c) Is the θ you chose a primitive element?
- **4.** Let F be a field. Prove that if

$$a_0 + a_1 x + \dots + a_n x^n \in F[x]$$

is irreducible, then so is

$$a_n + a_{n-1}x + \dots + a_0x^n.$$

- 5. Let μ be the Moebius function. Prove that $\mu(mn) = \mu(m)\mu(n)$ if gcd(m, n) = 1.
- **6.** Prove the reverse implication of the Moebius Inversion Formula (i.e. the direction omitted in the proof given in the notes).
- 7. How many monic irreducible polynomials in $\mathbb{F}_q[x]$ are there of degree (a)18? (b)20?
- 8. What is the product of all monic irreducible
 - (a) quartics in $\mathbb{F}_3[x]$;
 - (b) polynomials of degree 6 in $\mathbb{F}_2[x]$?