UNIVERSITY OF ST ANDREWS MT5826 Finite Fields Tutorial Sheet: Chapter 4

1. Fill in the details of the proof of Theorem $8.2(\mathrm{i})$ to show that $E^{(n)}$ is cyclic.
2. In the following, assume we are working in a field over which the cyclotomic polynomial Q_{n} is defined.
Find $Q_{n}(x)$, in its simplest form, for
(i) $n=8$;
(ii) $n=20$.
3. Express \mathbb{F}_{8} using

- root adjunction;
- the fact that it is the 7 th cyclotomic field over \mathbb{F}_{2}.

Draw up a table showing how the two representations correspond.
4. In this question, you are given the following theorem:

As in Theorem 7.16, let $I(q, n ; x)$ be the product of all monic irreducible polynomials in $\mathbb{F}_{q}[x]$ of degree n. Then for $n>1$ we have

$$
I(q, n ; x)=\prod_{m} Q_{m}(x),
$$

where the product is extended over all positive divisors m of $q^{n}-1$ for which n is the multiplicative order of q modulo m, and where $Q_{m}(x)$ is the m th cyclotomic polynomial over \mathbb{F}_{q}.
(i) Using the given theorem (or otherwise), calculate $I(3,2 ; x)$.
(ii) Use part (i) to determine all three monic irreducible polynomials in $\mathbb{F}_{3}[x]$ of degree 2. (Hint: Theorems 8.8 and 8.12 of the notes will help you here).

