UNIVERSITY OF ST ANDREWS MT5826 Finite Fields Tutorial Sheet: Chapter 4

- 1. Fill in the details of the proof of Theorem 8.2(i) to show that $E^{(n)}$ is cyclic.
- 2. In the following, assume we are working in a field over which the cyclotomic polynomial Q_n is defined. Find $Q_n(x)$, in its simplest form, for
 - (i) n = 8;
 - (ii) n = 20.
- **3.** Express \mathbb{F}_8 using
 - root adjunction;
 - the fact that it is the 7th cyclotomic field over \mathbb{F}_2 .

Draw up a table showing how the two representations correspond.

4. In this question, you are given the following theorem: As in Theorem 7.16, let I(q, n; x) be the product of all monic irreducible polynomials in $\mathbb{F}_q[x]$ of degree n. Then for n > 1 we have

$$I(q,n;x) = \prod_{m} Q_m(x),$$

where the product is extended over all positive divisors m of $q^n - 1$ for which n is the multiplicative order of q modulo m, and where $Q_m(x)$ is the mth cyclotomic polynomial over \mathbb{F}_q .

- (i) Using the given theorem (or otherwise), calculate I(3, 2; x).
- (ii) Use part (i) to determine all three monic irreducible polynomials in $\mathbb{F}_3[x]$ of degree 2. (Hint: Theorems 8.8 and 8.12 of the notes will help you here).