UNIVERSITY OF ST ANDREWS MT5826 Finite Fields
 Tutorial Sheet: Chapter 5

1. Using any method you choose, find a primitive element of \mathbb{F}_{9}. Demonstrate, by direct verification, that each of its conjugates with respect to \mathbb{F}_{3} is also a primitive element.
2. The set of automorphisms of \mathbb{C} over \mathbb{R} (i.e. the automorphisms of \mathbb{C} which fix \mathbb{R} pointwise) forms a group. Describe this group.
Hint: begin by considering the effect of such an automorphism on $i \in \mathbb{C}$.
3. Let $K=\mathbb{F}_{q}$ and let F be a finite extension of K. Let $\alpha=\beta^{q}-\beta$ for some $\beta \in F$.
Prove that

$$
\alpha=\gamma^{q}-\gamma \text { with } \gamma \in F \Leftrightarrow \beta-\gamma \in K \text {. }
$$

4. Let $K=\mathbb{F}_{q}$ and let $F=\mathbb{F}_{q^{m}}$ be a finite extension of K.

Prove that: for $\alpha \in F$,

$$
\mathrm{N}_{F / K}(\alpha)=1 \Leftrightarrow \alpha=\beta^{q-1} \text { for some } \beta \in F^{*} .
$$

5. Prove that, if the order of basis elements is taken into account, then the number of different bases of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} is

$$
\left(q^{m}-1\right)\left(q^{m}-q\right)\left(q^{m}-q^{2}\right) \cdots\left(q^{m}-q^{m-1}\right) .
$$

