A summary of MT5826 - Finite Fields

Max Neunhöffer

22nd April 2013

1 Cyclic groups

A group G is called cyclic, if there is a $g \in G$ with $G=\left\{g^{z} \mid z \in \mathbb{Z}\right\}=:\langle g\rangle$. Let $G=\langle g\rangle$ and $|G|=m<\infty$, then there is a bijection:

$\{$ divisors of $m\}$	\longleftrightarrow	\{subgroups of $G\}$
d	\longmapsto	$\left\langle g^{m / d}\right\rangle$

If $h \in G$ has order k, then h^{ℓ} has order $k / \operatorname{gcd}(\ell, k)$.

2 Rings and fields

Definition: Ring, ring with identity, integral domain, division ring, field.
Theorem: Every finite integral domain is a field.
Definition: Let R be a commutative ring with identity and I an ideal in R, then

$$
R / I:=\{r+I \mid r \in R\} \quad \text { where } \quad r+I:=\{r+i \mid i \in I\} .
$$

We define $(a+I)+(b+I):=(a+b)+I$ and $(a+I) \cdot(b+I):=(a \cdot b)+I$. In particular: $\mathbb{Z} /(n)$ and $F[x] /(f)$, where $(n)=\{n z \mid z \in \mathbb{Z}\}$ and $(f)=\{f g \mid g \in F[x]\}$ and F a field.
Lemma: $\mathbb{Z} /(n)$ is a field iff n is a prime and $F[x] /(f)$ is an extension field of F iff f is irreducible.
Definition/Proposition: Let R be a ring, the smallest $k \in \mathbb{N}$ with $k r=\underbrace{r+r+\cdots+r}_{k \text { times }}=0$ is called the characteristic of R. If there is no such k, the characteristic is 0 . If R is an integral domain, then the characteristic is 0 or a prime. $\mathbb{F}_{p}:=\mathbb{Z} /(p)$ has characteristic p, the rationals \mathbb{Q} have characteristic 0 , $F[x] /(f)$ has the same characteristic as F.
Definition: The prime field of a field F is the intersection of all its subfield, it is either \mathbb{F}_{p} or \mathbb{Q}, depending on the characteristic of F. A prime field is one with no proper subfields. The prime field of any field is a prime field.

3 Polynomials and roots

Definition: Let $f \in F[x]$ and let E be an extension field of F. Then $a \in E$ is called a root of f, if $f(a)=0$. If $a \in E$ is the root of some polynomial $f \in F[x]$, then a is called algebraic over F. In that case there is a unique monic polynomial $g \in F[x]$ of least degree with $g(a)=0$, it is called the minimal polynomial of a over F and it is always irreducible over F.
Lemma: In this situation, $f(a)=0$ for some $f \in F[x]$ if and only if g divides f in $F[x]$. This covers the case that $a \in F$, then $g=x-a$.
Definition: A root $a \in F$ of $f \in F[x]$ has multiplicity k, if $(x-a)^{k}$ divies f but $(x-a)^{k+1}$ does not divide f in $F[x]$. It is called simple, if $k=1$ and multiple otherwise.
Lemma: A root $a \in F$ of $f \in F[x]$ is a multiple root if and only if $x-a$ divides both f and f^{\prime} (formal derivative).

4 Field Extensions

In the whole section, E is an extension field of F and L one of E.
Observation: E is an F-vector space, using addition and multiplication from E.
Definition: The degree $[E: F$] is the dimension of E as F-vector space.
And: $[L: F]=[L: E] \cdot[E: F]$ if all are finite.
Theorem: If $[E: F]$ is finite, then E is an algebraic extension of F : all $a \in E$ are algebraic over F.
Definition: For any subset $M \in E$, we denote by $F(M)$ the smallest subfield of E that contains both F and M. It is the intersection of all such subfields and as such a subfield of E.
Definition: The degree of an element $a \in E$ over F is equal to $[F(a): F]$, it is finite if and only if a is algebraic over F.
Theorem: Let $a \in E$ be algebraic over F and let g be its minimal polynomial. Then $F[x] /(g)$ is isomorphic to $F(a)$ via the isomorphism mapping every $b \in F$ to itself and $x+(g)$ to a. Therefore, the degree d of $F(a)$ (and thus of a) over F is equal to the degree of g, and $\left(1, a, a^{2}, \ldots, a^{d-1}\right)$ is an F-basis of F.
Theorem (Kronecker): Let $f \in F[x]$ be an irreducible polynomial. Then there is a simple algebraic extension E of F with a root of f as defining element.
Definition: A polynomial $f \in F[x]$ splits over E, if $f=\prod_{i=1}^{n}\left(x-a_{i}\right)$ for some $a_{i} \in E$. The field E is called a splitting field, if f splits over E and $E=F\left(a_{1}, \ldots, a_{n}\right)$. That is, a splitting field is a smallest possible extension field containing all roots of f.
Theorem: For every polynomial $f \in F[x]$ there is a splitting field E and all such splitting fields are isomorphic.

5 Finite fields

Theorem: For every prime power $q=p^{n}$ there is (up to isomorphism) exactly one finite field, denoted by \mathbb{F}_{q}. It has characteristic p and is the splitting field of $x^{q}-x$ over \mathbb{F}_{p}.
Theorem: Let p and r be primes. Then $\mathbb{F}_{p^{m}}$ is isomorphic to a subfield of $\mathbb{F}_{r^{n}}$ if and only if $p=r$ and m is a divisor of n. In this case $\mathbb{F}_{p^{n}}$ has exactly one subfield (not up to isomorphism!) with p^{m} elements, namely the set of roots of $x^{p^{m}}-x$.
Theorem: Every finite subgroup G of the multiplicative group \mathbb{F}^{*} of a field \mathbb{F} is cyclic.
So in particular, \mathbb{F}_{q}^{*} is cyclic and has $q-1$ elements, the generators (as group) are called primitive elements. If $q=p^{n}$, they all have degree n over \mathbb{F}_{p}. Note that there can be elements \mathbb{F}_{q} of degree n but whose order is a proper divisor of $q-1$.
Corollary: For every prime power q and every $n \in \mathbb{N}$, there is an irreducible polynomial $f \in \mathbb{F}_{q}[x]$ of degree n. Just take the minimal polynomial over \mathbb{F}_{q} of a primitive element of $\mathbb{F}_{q^{n}}$.

6 Irreducible polynomials

Let $f \in \mathbb{F}_{q}[x]$ be irreducible of degree n, then $\mathbb{F}_{q}[x] /(f)$ is an extension field of \mathbb{F}_{q} of degree n, so $\mathbb{F}_{q}[x] /(f) \cong \mathbb{F}_{q^{n}}$. Let $a \in \mathbb{F}_{q^{n}}$ be any root of f, then f is the minimal polynomial of a over \mathbb{F}_{q}.
Theorem: The roots of f all lie in $\mathbb{F}_{q^{n}}$, they are $a, a^{q}, a^{q^{2}}, \ldots, a^{q^{n-1}}$. These elements are called the conjugates of a over \mathbb{F}_{q}. This implies that $\mathbb{F}_{q^{n}}=\mathbb{F}_{q}(a)$ and $\mathbb{F}_{q^{n}}$ is the splitting field of f over \mathbb{F}_{q}.
Theorem: $x^{q^{n}}-x$ is the product of all monic irreducible polynomials $f \in \mathbb{F}_{q}[x]$ with $\operatorname{deg} f \mid n$.
Definition: The Moebius function $\mu: \mathbb{N} \rightarrow \mathbb{N}$ is: $\mu(n)=0$ if n is divisible by a square of a prime and $\mu\left(p_{1} \cdots \cdots p_{k}\right)=(-1)^{k}$ if the p_{i} are pairwise distinct primes.
Theorem: (Moebius Inversion) For $H, h: \mathbb{N} \rightarrow G$ we have

$$
H(n)=\sum_{d \mid n} h(d) \quad \forall n \in \mathbb{N} \quad \Longleftrightarrow \quad h(n)=\sum_{d \mid n} \mu(d) H(n / d)=\sum_{d \mid n} \mu(n / d) H(d) \quad \forall n \in \mathbb{N},
$$

if G is written additively, and

$$
H(n)=\prod_{d \mid n} h(d) \quad \forall n \in \mathbb{N} \quad \Longleftrightarrow \quad h(n)=\prod_{d \mid n} H(n / d)^{\mu(d)}=\prod_{d \mid n} H(d)^{\mu(n / d)} \quad \forall n \in \mathbb{N},
$$

if G is written multiplicatively.
Theorem: The product of all monic irreducible polynomials of degree n over \mathbb{F}_{q} is

$$
I(q, n ; x)=\prod_{d \mid n}\left(x^{q^{d}}-x\right)^{\mu(n / d)} .
$$

Corollary: If $N_{q}(n)$ is the number of monic irreducible polynomials over \mathbb{F}_{q}, then

$$
N_{q}(n)=\frac{1}{n} \sum_{d \mid n} \mu(n / d) q^{d} .
$$

7 Roots of unity

Definition: Let F be a field and $n \in \mathbb{N}$. Then $F^{(n)}$ is the n-th cyclotomic field of F (the splitting field of $x^{n}-1$ over F) and $E^{(n)}$ is the set of n-th roots of unity over F. An element of $E^{(n)}$ of order n is called a primitive n-th root of unity.
Theorem: If $p=$ char F and $p \nmid n$, then $E^{(n)}$ (with multiplication of $F^{(n)}$) is a cyclic group of order n. If $n=p^{k} \cdot m$ and $p \nmid m$, then $F^{(n)}=F^{(m)}$ and $E^{(n)}=E^{(m)}$.
Definition/Proposition: Assume char $F \nmid n \in \mathbb{N}$. Then the n-th cyclotomic polynomial is defined as

$$
Q_{n}(x)=\prod_{\substack{1 \leq s, n \\ \operatorname{gcd}(s, n)=1}}\left(x-\zeta^{s}\right),
$$

where ζ is a primitive n-th root of unity. $Q_{n}(x)$ has coefficients in the prime field of F (and in \mathbb{Z} if char $F=0$), and:

$$
Q_{n}(x)=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu(n / d)} .
$$

If $F=\mathbb{F}_{q}$ and $d=\operatorname{ord}_{n}(q)$, the polynomial Q_{n} factors over \mathbb{F}_{q} into a product of $\phi(n) / d$ distinct monic irreducible factors of degree d and $\mathbb{F}_{q}^{(n)}$ is the splitting field of any of these factors.
Theorem: We have $I(q, n ; x)=\prod_{m} Q_{m}(x)$ where m runs through the positive divisors of $q^{n}-1$ for which $n=\operatorname{ord}_{m}(q)$ and where $Q_{m}(x)$ is the m-th cyclotomic polynomial over \mathbb{F}_{q}.

8 Automorphisms, traces and norms

Definition: Let E be an extension field of F. An automorphism of E over F is a field automorphism of E that fixes every single element of F.
Theorem: The field automorphisms of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} are precisely the mappings $\sigma_{j}: a \mapsto a^{q^{j}}$. They form a cyclic group of order n under composition. This is the Galois group of the extension $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}.
Definition/Proposition: Let $E=\mathbb{F}_{q^{n}}$ and $F=\mathbb{F}_{q}$. Then the trace of E / F is the map $\operatorname{Tr}_{E / F}: E \rightarrow F$ which maps $a \in E$ to the sum $a+a^{q}+a^{q^{2}}+\cdots+a^{q^{n-1}}$ of its conjugates. $\operatorname{Tr}_{E / F}$ is a surjective F-linear map and $(a, b) \mapsto \operatorname{Tr}_{E / F}(a \cdot b)$ is a non-degenerate F-bilinear form on E.
Definition/Proposition: Let $E=\mathbb{F}_{q^{n}}$ and $F=\mathbb{F}_{q}$. Then the norm of E / F is the map $N_{E / F}: E \rightarrow F$ which maps $a \in E$ to the product $a \cdot a^{q} \cdot a^{q^{2}} \cdots \cdots a^{q^{n-1}}=a^{\frac{q^{n}-1}{q-1}}$ of its conjugates. $N_{E / F}$ is a surjective group homomorphism from E^{*} to F^{*}.
Theorem: If $F \subseteq E \subseteq L$ are fields, then

$$
\operatorname{Tr}_{L / F}(a)=\operatorname{Tr}_{E / F}\left(\operatorname{Tr}_{L / E}(a)\right) \quad \text { and } \quad N_{L / F}(a)=N_{E / F}\left(N_{L / E}(a)\right)
$$

for all $a \in L$.

