A summary of MT5826 — Finite Fields

Max Neunhöffer

22nd April 2013

1 Cyclic groups

A group G is called *cyclic*, if there is a $g \in G$ with $G = \{g^z \mid z \in \mathbb{Z}\} =: \langle g \rangle$. Let $G = \langle g \rangle$ and $|G| = m < \infty$, then there is a bijection:

 $\begin{array}{ccc} \{ \text{divisors of } m \} & \longleftrightarrow & \{ \text{subgroups of } G \} \\ d & \longmapsto & \left\langle g^{m/d} \right\rangle & (\text{of order } d) \end{array}$

If $h \in G$ has order k, then h^{ℓ} has order $k / \operatorname{gcd}(\ell, k)$.

2 Rings and fields

Definition: Ring, ring with identity, integral domain, division ring, field. **Theorem:** Every finite integral domain is a field.

Definition: Let R be a commutative ring with identity and I an ideal in R, then

$$R/I := \{r + I \mid r \in R\}$$
 where $r + I := \{r + i \mid i \in I\}.$

We define (a + I) + (b + I) := (a + b) + I and $(a + I) \cdot (b + I) := (a \cdot b) + I$. In particular: $\mathbb{Z}/(n)$ and F[x]/(f), where $(n) = \{nz \mid z \in \mathbb{Z}\}$ and $(f) = \{fg \mid g \in F[x]\}$ and F a field. Lemma: $\mathbb{Z}/(n)$ is a field iff n is a prime and F[x]/(f) is an extension field of F iff f is irreducible. Definition/Proposition: Let R be a ring, the smallest $k \in \mathbb{N}$ with $kr = r + r + \cdots + r = 0$ is called

the characteristic of R. If there is no such k, the characteristic is 0. If R is an integral domain, then the characteristic is 0 or a prime. $\mathbb{F}_p := \mathbb{Z}/(p)$ has characteristic p, the rationals \mathbb{Q} have characteristic 0, F[x]/(f) has the same characteristic as F.

Definition: The prime field of a field F is the intersection of all its subfield, it is either \mathbb{F}_p or \mathbb{Q} , depending on the characteristic of F. A prime field is one with no proper subfields. The prime field of any field is a prime field.

3 Polynomials and roots

Definition: Let $f \in F[x]$ and let E be an extension field of F. Then $a \in E$ is called a *root of* f, if f(a) = 0. If $a \in E$ is the root of some polynomial $f \in F[x]$, then a is called *algebraic over* F. In that case there is a unique monic polynomial $g \in F[x]$ of least degree with g(a) = 0, it is called the *minimal polynomial of a over* F and it is always irreducible over F.

Lemma: In this situation, f(a) = 0 for some $f \in F[x]$ if and only if g divides f in F[x]. This covers the case that $a \in F$, then g = x - a.

Definition: A root $a \in F$ of $f \in F[x]$ has multiplicity k, if $(x - a)^k$ divies f but $(x - a)^{k+1}$ does not divide f in F[x]. It is called *simple*, if k = 1 and *multiple* otherwise.

Lemma: A root $a \in F$ of $f \in F[x]$ is a multiple root if and only if x - a divides both f and f' (formal derivative).

4 Field Extensions

In the whole section, E is an extension field of F and L one of E.

Observation: E is an F-vector space, using addition and multiplication from E.

Definition: The *degree* [E : F] is the dimension of E as F-vector space.

And: $[L:F] = [L:E] \cdot [E:F]$ if all are finite.

Theorem: If [E : F] is finite, then E is an *algebraic extension* of F: all $a \in E$ are algebraic over F.

Definition: For any subset $M \in E$, we denote by F(M) the smallest subfield of E that contains both F and M. It is the intersection of all such subfields and as such a subfield of E.

Definition: The *degree* of an element $a \in E$ over F is equal to [F(a) : F], it is finite if and only if a is algebraic over F.

Theorem: Let $a \in E$ be algebraic over F and let g be its minimal polynomial. Then F[x]/(g) is isomorphic to F(a) via the isomorphism mapping every $b \in F$ to itself and x + (g) to a. Therefore, the degree d of F(a) (and thus of a) over F is equal to the degree of g, and $(1, a, a^2, \ldots, a^{d-1})$ is an F-basis of F.

Theorem (Kronecker): Let $f \in F[x]$ be an irreducible polynomial. Then there is a simple algebraic extension E of F with a root of f as defining element.

Definition: A polynomial $f \in F[x]$ splits over E, if $f = \prod_{i=1}^{n} (x - a_i)$ for some $a_i \in E$. The field E is called a splitting field, if f splits over E and $E = F(a_1, \ldots, a_n)$. That is, a splitting field is a smallest possible extension field containing all roots of f.

Theorem: For every polynomial $f \in F[x]$ there is a splitting field E and all such splitting fields are isomorphic.

5 Finite fields

Theorem: For every prime power $q = p^n$ there is (up to isomorphism) exactly one finite field, denoted by \mathbb{F}_q . It has characteristic p and is the splitting field of $x^q - x$ over \mathbb{F}_p .

Theorem: Let p and r be primes. Then \mathbb{F}_{p^m} is isomorphic to a subfield of \mathbb{F}_{r^n} if and only if p = r and m is a divisor of n. In this case \mathbb{F}_{p^n} has exactly one subfield (not up to isomorphism!) with p^m elements, namely the set of roots of $x^{p^m} - x$.

Theorem: Every finite subgroup G of the multiplicative group \mathbb{F}^* of a field \mathbb{F} is cyclic.

So in particular, \mathbb{F}_q^* is cyclic and has q-1 elements, the generators (as group) are called *primitive* elements. If $q = p^n$, they all have degree n over \mathbb{F}_p . Note that there can be elements \mathbb{F}_q of degree n but whose order is a proper divisor of q-1.

Corollary: For every prime power q and every $n \in \mathbb{N}$, there is an irreducible polynomial $f \in \mathbb{F}_q[x]$ of degree n. Just take the minimal polynomial over \mathbb{F}_q of a primitive element of \mathbb{F}_{q^n} .

6 Irreducible polynomials

Let $f \in \mathbb{F}_q[x]$ be irreducible of degree n, then $\mathbb{F}_q[x]/(f)$ is an extension field of \mathbb{F}_q of degree n, so $\mathbb{F}_q[x]/(f) \cong \mathbb{F}_{q^n}$. Let $a \in \mathbb{F}_{q^n}$ be any root of f, then f is the minimal polynomial of a over \mathbb{F}_q . **Theorem:** The roots of f all lie in \mathbb{F}_{q^n} , they are $a, a^q, a^{q^2}, \ldots, a^{q^{n-1}}$. These elements are called the *conjugates of a over* \mathbb{F}_q . This implies that $\mathbb{F}_{q^n} = \mathbb{F}_q(a)$ and \mathbb{F}_{q^n} is the splitting field of f over \mathbb{F}_q . **Theorem:** $x^{q^n} - x$ is the product of all monic irreducible polynomials $f \in \mathbb{F}_q[x]$ with deg $f \mid n$. **Definition:** The Moebius function $\mu : \mathbb{N} \to \mathbb{N}$ is: $\mu(n) = 0$ if n is divisible by a square of a prime and $\mu(p_1 \cdots p_k) = (-1)^k$ if the p_i are pairwise distinct primes. **Theorem:** (Moebius Inversion) For $H, h : \mathbb{N} \to G$ we have

$$H(n) = \sum_{d|n} h(d) \quad \forall \ n \in \mathbb{N} \quad \Longleftrightarrow \quad h(n) = \sum_{d|n} \mu(d) H(n/d) = \sum_{d|n} \mu(n/d) H(d) \quad \forall \ n \in \mathbb{N},$$

if G is written additively, and

$$H(n) = \prod_{d|n} h(d) \quad \forall n \in \mathbb{N} \quad \Longleftrightarrow \quad h(n) = \prod_{d|n} H(n/d)^{\mu(d)} = \prod_{d|n} H(d)^{\mu(n/d)} \quad \forall n \in \mathbb{N},$$

if G is written multiplicatively.

Theorem: The product of all monic irreducible polynomials of degree n over \mathbb{F}_q is

$$I(q,n;x) = \prod_{d|n} \left(x^{q^d} - x \right)^{\mu(n/d)}$$

Corollary: If $N_q(n)$ is the number of monic irreducible polynomials over \mathbb{F}_q , then

$$N_q(n) = \frac{1}{n} \sum_{d|n} \mu(n/d) q^d.$$

7 Roots of unity

Definition: Let F be a field and $n \in \mathbb{N}$. Then $F^{(n)}$ is the *n*-th cyclotomic field of F (the splitting field of $x^n - 1$ over F) and $E^{(n)}$ is the set of *n*-th roots of unity over F. An element of $E^{(n)}$ of order n is called a *primitive n*-th root of unity.

Theorem: If p = char F and $p \nmid n$, then $E^{(n)}$ (with multiplication of $F^{(n)}$) is a cyclic group of order n. If $n = p^k \cdot m$ and $p \nmid m$, then $F^{(n)} = F^{(m)}$ and $E^{(n)} = E^{(m)}$.

Definition/Proposition: Assume char $F \nmid n \in \mathbb{N}$. Then the *n*-th cyclotomic polynomial is defined as

$$Q_n(x) = \prod_{\substack{1 \le s \le n \\ \gcd(s,n)=1}} (x - \zeta^s)$$

where ζ is a primitive *n*-th root of unity. $Q_n(x)$ has coefficients in the prime field of F (and in \mathbb{Z} if char F = 0), and:

$$Q_n(x) = \prod_{d|n} (x^d - 1)^{\mu(n/d)}$$

If $F = \mathbb{F}_q$ and $d = \operatorname{ord}_n(q)$, the polynomial Q_n factors over \mathbb{F}_q into a product of $\phi(n)/d$ distinct monic irreducible factors of degree d and $\mathbb{F}_q^{(n)}$ is the splitting field of any of these factors.

Theorem: We have $I(q, n; x) = \prod_m Q_m(x)$ where m runs through the positive divisors of $q^n - 1$ for which $n = \operatorname{ord}_m(q)$ and where $Q_m(x)$ is the m-th cyclotomic polynomial over \mathbb{F}_q .

8 Automorphisms, traces and norms

Definition: Let E be an extension field of F. An *automorphism of* E *over* F is a field automorphism of E that fixes every single element of F.

Theorem: The field automorphisms of \mathbb{F}_{q^n} over \mathbb{F}_q are precisely the mappings $\sigma_j : a \mapsto a^{q^j}$. They form a cyclic group of order n under composition. This is the *Galois group* of the extension \mathbb{F}_{q^n} over \mathbb{F}_q .

Definition/Proposition: Let $E = \mathbb{F}_{q^n}$ and $F = \mathbb{F}_q$. Then the *trace of* E/F is the map $\operatorname{Tr}_{E/F} : E \to F$ which maps $a \in E$ to the sum $a + a^q + a^{q^2} + \cdots + a^{q^{n-1}}$ of its conjugates. $\operatorname{Tr}_{E/F}$ is a surjective F-linear map and $(a, b) \mapsto \operatorname{Tr}_{E/F}(a \cdot b)$ is a non-degenerate F-bilinear form on E.

Definition/Proposition: Let $E = \mathbb{F}_{q^n}$ and $F = \mathbb{F}_q$. Then the norm of E/F is the map $N_{E/F} : E \to F$ which maps $a \in E$ to the product $a \cdot a^q \cdot a^{q^2} \cdot \cdots \cdot a^{q^{n-1}} = a^{\frac{q^n-1}{q-1}}$ of its conjugates. $N_{E/F}$ is a surjective group homomorphism from E^* to F^* .

Theorem: If $F \subseteq E \subseteq L$ are fields, then

$$\operatorname{Tr}_{L/F}(a) = \operatorname{Tr}_{E/F}(\operatorname{Tr}_{L/E}(a)) \quad \text{and} \quad N_{L/F}(a) = N_{E/F}(N_{L/E}(a))$$

for all $a \in L$.