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1 Cyclic groups

A group G is called cyclic, if there is a g ∈ G with G = {gz | z ∈ Z} =: 〈g〉.
Let G = 〈g〉 and |G| = m <∞, then there is a bijection:

{divisors of m} ←→ {subgroups of G}
d 7−→

〈
gm/d

〉
(of order d)

If h ∈ G has order k, then h` has order k/ gcd(`, k).

2 Rings and fields

Definition: Ring, ring with identity, integral domain, division ring, field.
Theorem: Every finite integral domain is a field.
Definition: Let R be a commutative ring with identity and I an ideal in R, then

R/I := {r + I | r ∈ R} where r + I := {r + i | i ∈ I}.

We define (a+ I) + (b+ I) := (a+ b) + I and (a+ I) · (b+ I) := (a · b) + I . In particular:
Z/(n) and F [x]/(f), where (n) = {nz | z ∈ Z} and (f) = {fg | g ∈ F [x]} and F a field.
Lemma: Z/(n) is a field iff n is a prime and F [x]/(f) is an extension field of F iff f is irreducible.
Definition/Proposition: Let R be a ring, the smallest k ∈ N with kr = r + r + · · ·+ r︸ ︷︷ ︸

k times

= 0 is called

the characteristic of R. If there is no such k, the characteristic is 0. If R is an integral domain, then the
characteristic is 0 or a prime. Fp := Z/(p) has characteristic p, the rationals Q have characteristic 0,
F [x]/(f) has the same characteristic as F .
Definition: The prime field of a field F is the intersection of all its subfield, it is either Fp or Q,
depending on the characteristic of F . A prime field is one with no proper subfields. The prime field of
any field is a prime field.

3 Polynomials and roots

Definition: Let f ∈ F [x] and let E be an extension field of F . Then a ∈ E is called a root of f , if
f(a) = 0. If a ∈ E is the root of some polynomial f ∈ F [x], then a is called algebraic over F . In that
case there is a unique monic polynomial g ∈ F [x] of least degree with g(a) = 0, it is called the minimal
polynomial of a over F and it is always irreducible over F .
Lemma: In this situation, f(a) = 0 for some f ∈ F [x] if and only if g divides f in F [x]. This covers
the case that a ∈ F , then g = x− a.
Definition: A root a ∈ F of f ∈ F [x] has multiplicity k, if (x − a)k divies f but (x − a)k+1 does not
divide f in F [x]. It is called simple, if k = 1 and multiple otherwise.
Lemma: A root a ∈ F of f ∈ F [x] is a multiple root if and only if x− a divides both f and f ′ (formal
derivative).
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4 Field Extensions

In the whole section, E is an extension field of F and L one of E.
Observation: E is an F -vector space, using addition and multiplication from E.
Definition: The degree [E : F ] is the dimension of E as F -vector space.
And: [L : F ] = [L : E] · [E : F ] if all are finite.
Theorem: If [E : F ] is finite, then E is an algebraic extension of F : all a ∈ E are algebraic over F .
Definition: For any subset M ∈ E, we denote by F (M) the smallest subfield of E that contains both
F and M . It is the intersection of all such subfields and as such a subfield of E.
Definition: The degree of an element a ∈ E over F is equal to [F (a) : F ], it is finite if and only if a is
algebraic over F .
Theorem: Let a ∈ E be algebraic over F and let g be its minimal polynomial. Then F [x]/(g) is
isomorphic to F (a) via the isomorphism mapping every b ∈ F to itself and x + (g) to a. Therefore,
the degree d of F (a) (and thus of a) over F is equal to the degree of g, and (1, a, a2, . . . , ad−1) is an
F -basis of F .
Theorem (Kronecker): Let f ∈ F [x] be an irreducible polynomial. Then there is a simple algebraic
extension E of F with a root of f as defining element.
Definition: A polynomial f ∈ F [x] splits over E, if f =

∏n
i=1(x− ai) for some ai ∈ E. The field E is

called a splitting field, if f splits over E and E = F (a1, . . . , an). That is, a splitting field is a smallest
possible extension field containing all roots of f .
Theorem: For every polynomial f ∈ F [x] there is a splitting field E and all such splitting fields are
isomorphic.

5 Finite fields

Theorem: For every prime power q = pn there is (up to isomorphism) exactly one finite field, denoted
by Fq. It has characteristic p and is the splitting field of xq − x over Fp.
Theorem: Let p and r be primes. Then Fpm is isomorphic to a subfield of Frn if and only if p = r and
m is a divisor of n. In this case Fpn has exactly one subfield (not up to isomorphism!) with pm elements,
namely the set of roots of xp

m − x.
Theorem: Every finite subgroup G of the multiplicative group F∗ of a field F is cyclic.
So in particular, F∗q is cyclic and has q − 1 elements, the generators (as group) are called primitive
elements. If q = pn, they all have degree n over Fp. Note that there can be elements Fq of degree n but
whose order is a proper divisor of q − 1.
Corollary: For every prime power q and every n ∈ N, there is an irreducible polynomial f ∈ Fq[x] of
degree n. Just take the minimal polynomial over Fq of a primitive element of Fqn .

6 Irreducible polynomials

Let f ∈ Fq[x] be irreducible of degree n, then Fq[x]/(f) is an extension field of Fq of degree n, so
Fq[x]/(f) ∼= Fqn . Let a ∈ Fqn be any root of f , then f is the minimal polynomial of a over Fq.
Theorem: The roots of f all lie in Fqn , they are a, aq, aq

2
, . . . , aq

n−1
. These elements are called the

conjugates of a over Fq. This implies that Fqn = Fq(a) and Fqn is the splitting field of f over Fq.
Theorem: xqn − x is the product of all monic irreducible polynomials f ∈ Fq[x] with deg f | n.
Definition: The Moebius function µ : N → N is: µ(n) = 0 if n is divisible by a square of a prime and
µ(p1 · · · · · pk) = (−1)k if the pi are pairwise distinct primes.
Theorem: (Moebius Inversion) For H,h : N→ G we have

H(n) =
∑
d|n

h(d) ∀ n ∈ N ⇐⇒ h(n) =
∑
d|n

µ(d)H(n/d) =
∑
d|n

µ(n/d)H(d) ∀ n ∈ N,

2



if G is written additively, and

H(n) =
∏
d|n

h(d) ∀ n ∈ N ⇐⇒ h(n) =
∏
d|n

H(n/d)µ(d) =
∏
d|n

H(d)µ(n/d) ∀ n ∈ N,

if G is written multiplicatively.
Theorem: The product of all monic irreducible polynomials of degree n over Fq is

I(q, n;x) =
∏
d|n

(
xq

d − x
)µ(n/d)

.

Corollary: If Nq(n) is the number of monic irreducible polynomials over Fq, then

Nq(n) =
1

n

∑
d|n

µ(n/d)qd.

7 Roots of unity

Definition: Let F be a field and n ∈ N. Then F (n) is the n-th cyclotomic field of F (the splitting field
of xn − 1 over F ) and E(n) is the set of n-th roots of unity over F . An element of E(n) of order n is
called a primitive n-th root of unity.
Theorem: If p = char F and p - n, then E(n) (with multiplication of F (n)) is a cyclic group of order n.
If n = pk ·m and p - m, then F (n) = F (m) and E(n) = E(m).
Definition/Proposition: Assume char F - n ∈ N. Then the n-th cyclotomic polynomial is defined as

Qn(x) =
∏

1≤s≤n
gcd(s,n)=1

(x− ζs),

where ζ is a primitive n-th root of unity. Qn(x) has coefficients in the prime field of F (and in Z if
char F = 0), and:

Qn(x) =
∏
d|n

(xd − 1)µ(n/d).

If F = Fq and d = ordn(q), the polynomial Qn factors over Fq into a product of φ(n)/d distinct monic
irreducible factors of degree d and F(n)

q is the splitting field of any of these factors.
Theorem: We have I(q, n;x) =

∏
mQm(x) where m runs through the positive divisors of qn − 1 for

which n = ordm(q) and where Qm(x) is the m-th cyclotomic polynomial over Fq.

8 Automorphisms, traces and norms

Definition: Let E be an extension field of F . An automorphism of E over F is a field automorphism of
E that fixes every single element of F .
Theorem: The field automorphisms of Fqn over Fq are precisely the mappings σj : a 7→ aq

j
. They

form a cyclic group of order n under composition. This is the Galois group of the extension Fqn over
Fq.
Definition/Proposition: Let E = Fqn and F = Fq. Then the trace of E/F is the map TrE/F : E → F

which maps a ∈ E to the sum a+aq+aq
2
+ · · ·+aqn−1

of its conjugates. TrE/F is a surjective F -linear
map and (a, b) 7→ TrE/F (a · b) is a non-degenerate F -bilinear form on E.
Definition/Proposition: Let E = Fqn and F = Fq. Then the norm of E/F is the map NE/F : E → F

which maps a ∈ E to the product a ·aq ·aq2 · · · · ·aqn−1
= a

qn−1
q−1 of its conjugates. NE/F is a surjective

group homomorphism from E∗ to F ∗.
Theorem: If F ⊆ E ⊆ L are fields, then

TrL/F (a) = TrE/F (TrL/E(a)) and NL/F (a) = NE/F (NL/E(a))

for all a ∈ L.
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