
Chapter 2

Fundamental definitions

4 Lie algebras
Definition 4.1 (Lie algebra)
A Lie algebra is a vector space L over a field F together with a multiplication

L × L → L , (x, y) 7→ [x, y],

satisfying the following axioms:

(L1) [x + y, z] = [x, z] + [y, z] and [x, y + z] = [x, y] + [x, z],

(L2) [λx, y] = [x, λy] = λ[x, y],

(L3) [x, x] = 0, and

(L4) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0,

whenever x, y, z ∈ L and λ ∈ F. Axiom (L4) is called the Jacobi identity.
Note that [[x, y], z] is not necessarily equal to [x, [y, z]], we do not have associativity!

Remark: In this course, we will mostly study Lie algebras over the complex field C.

Lemma 4.2 (First properties)
Let L be a Lie algebra over a field F. Then [x, y] = −[y, x] for all x, y ∈ L . The Lie multiplication
is anticommutative.

Proof. We have 0 = [x + y, x + y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x]. �

Example 4.3 (Abelian Lie algebras)
Every F-vector space L with [x, y] = 0 for all x, y ∈ L is a Lie algebra. Such a Lie algebra is
called abelian. Abelian Lie algebras are somewhat boring.

Example 4.4 (Lie(A), the Lie algebra of an associative algebra)
Let A be an associative algebra over a field F. That is, A is a ring with identity together with a ring
homomorphism ι : F→ Z(A)where Z(A) := {x ∈ A | xy = yx for all y ∈ A} is the centre of A,
the set of elements of A that commute with every other element. Such an A is then automatically
an F-vector space by setting λ · a := ι(λ) · a for λ ∈ F and a ∈ A. In particular, the multiplication
of A is associative: (x · y) · z = x · (y · z).
If you do not remember this structure, simply think of A = Cn×n , the set of all n × n-matrices with
componentwise addition and matrix multiplication. The map ι here is the embedding of C into the
scalar multiples of the identity matrix.
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8 CHAPTER 2. FUNDAMENTAL DEFINITIONS

Every associative algebra A becomes a Lie algebra by defining the Lie product in this way:

[x, y] := x · y − y · x for all x, y ∈ A.

We check the axioms:

(L1) [x + y, z] = (x + y) · z − z · (x + y) = x · z + y · z = [x, z] + [y, z].

(L2) [λx, y] = (λx) · y− y · (λx) = x · (λy)− (λy) · x = [x, λy] and this is equal to λ(x · y− y · x).

(L3) [x, x] = x · x − x · x = 0.

(L4) [[x, y], z] = [xy − yx, z] = xyz − yxz + zxy − zyx , permuting cyclically and adding up
everything shows the Jacobi identity.

For a C-vector space V , the set of endomorphisms End(V ) (linear maps of V into itself) is an
associative algebra with composition as multiplication. The map ι here is the embedding of C into
the scalar multiples of the identity map.
We set gl(V ) := Lie(End(V )). By choosing a basis of V this is the same as Lie(Cn×n) if dimC(V ) =
n (see 4.8 below). Thus, we can compute in gl(C1×2)[[

1 2
3 4

]
,

[
−1 1
1 0

]]
=

[
1 2
3 4

]
·

[
−1 1
1 0

]
−

[
−1 1
1 0

]
·

[
1 2
3 4

]
=

[
−1 −1
0 1

]
,

using the standard basis.

Example 4.5 (Vector product)
Let L := R1×3 be the 3-dimensional real row space with the following product:

[[a, b, c], [x, y, z]] := [a, b, c] × [x, y, z] := [bz − cy, cx − az, ay − bx].

This is a Lie algebra over the field R of real numbers.
Note: The vector v := [a, b, c]× [x, y, z] is zero if and only if the vectors [a, b, c] and [x, y, z] are
parallel. Otherwise v is orthogonal to both [a, b, c] and [x, y, z] and its length is equal to the area
of the parallelogram spanned by [a, b, c] and [x, y, z].
Exercise: Check the Jacobi identity for this Lie algebra.

Example 4.6 (sl2)
Let sl2 be the subspace of C2×2 containing all matrices of trace 0:

sl2 :=
{

M ∈ C2×2
| Tr(M) = 0

}
(remember, the trace Tr(M) of a square matrix M is the sum of the main diagonal entries).
Then sl2 with

[A, B] := A · B − B · A for all A, B ∈ sl2

as Lie product is a Lie algebra, since Tr(A · B) = Tr(B · A) for arbitrary square matrices A and B.
This Lie algebra will play a major role in this whole theory! It is somehow the smallest interesting
building block.

Definition 4.7 (Homomorphisms, isomorphisms)
Let L1 and L2 be Lie algebras over the same field F. A homomorphism of Lie algebras from L1

to L2 is a linear map ϕ : L1 → L2, such that

[x, y]ϕ = [xϕ, yϕ] for all x, y ∈ L1.

If ϕ is bijective, then it is called an isomorphism of Lie algebras.
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Example 4.8 (gl(C1×n) and Lie(Cn×n) are isomorphic)
Choosing a basis (v1, . . . , vn) of the C-vector space C1×n gives rise to an isomorphism of Lie
algebras gl(C1×n) ∼= Lie(Cn×n) by mapping a linear map ϕ : C1×n

→ C1×n to its matrix with
respect to the basis (v1, . . . , vn) as in Theorem 2.9.

Definition 4.9 (Subalgebras and ideals)
Let L be a Lie algebra over a field F and let H and K be subspaces of L . We then set

[H, K ] := Span
({
[h, k] ∈ L

∣∣ h ∈ H, k ∈ K
})
.

Note [H, K ] = [K , H ] and that we have to use Span here to ensure that this is a subspace of L .
A Lie subalgebra or short subalgebra of L is a subspace H with [H, H ] ≤ H .
A Lie ideal or short ideal of L is a subspace K with [K , L] ≤ K .
Obviously, every ideal is a subalgebra.

Example 4.10 (Centre and derived subalgebra)
Let L be a Lie algebra over a field F. Then the centre Z(L) := {x ∈ L | [x, y] = 0 for all y ∈ L}
and the derived algebra [L , L] := Span({[x, y] | x, y ∈ L}) are ideals in L .

Definition 4.11 (Normaliser and centraliser)
Let L be a Lie algebra over a field F and let H be a subspace of L (not necessarily a subalgebra!).
We then define the normaliser NL(H) of H in L to be the space

NL(H) := {x ∈ L | [x, H ] ⊆ H} .

We define the centraliser CL(H) of H in L to be the space

CL(H) := {x ∈ L | [x, H ] = 0} .

Exercise: Use the Jacobi identity to show that both the normaliser and the centraliser are Lie sub-
algebras of L .

Proposition 4.12 (Properties of subalgebras)
Let H and K be subspaces of a Lie algebra L over F and let H + K := {h + k | h ∈ H, k ∈ K } be
their sum as subspaces.

(i) If H and K are subalgebras, then H ∩ K is.

(ii) If H and K are ideals, then H ∩ K is.

(iii) If H is an ideal and K is a subalgebra, then H + K is a subalgebra of L .

Proof. Left as an exercise for the reader. �

Example 4.13 (Lie(Cn×n) revisited)
Let L = Cn×n with n ≥ 2.
The subspace H of matrices with trace 0 is an ideal since Tr(A·B) = Tr(B ·A) for arbitrary matrices
A and B and thus Tr([A, B]) = 0 for all A ∈ H and B ∈ L .
The subspace K of skew-symmetric matrices, i.e.

{
A ∈ Cn×n

| At
= −A

}
where At is the trans-

posed matrix of A, is a subalgebra but not an ideal: If A, B ∈ K , then

[A, B]t = (A · B− B · A)t = B t
· At
− At
· B t
= (−B) · (−A)− (−A) · (−B) = [B, A] = −[A, B].

Exercise: Show that K is not an ideal.
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Lemma 4.14 (Kernels of homomorphisms are ideals and images are subalgebras)
Let L and H be Lie algebras over a field F and ϕ : L → H . Then the image I := im (ϕ) is a Lie
subalgebra of H and the kernel K := ker (ϕ) is a Lie ideal of L .

Proof. Since ϕ is F-linear, both I and K are subspaces.
If x, y ∈ I , there are x̃, ỹ ∈ L with x̃ϕ = x and ỹϕ = y. Then [x, y] = [x̃, ỹ]ϕ ∈ I as well.
If x ∈ K , that is, xϕ = 0, then for y ∈ L we have [x, y]ϕ = [xϕ, yϕ] = [0, yϕ] = 0 and thus
[x, y] ∈ K as well. �

Note: In fact, Lie ideals are exactly the kernels of Lie algebra homomorphisms, as we will see next.

Definition 4.15 (Quotient Lie algebra)
Let L be a Lie algebra over a field F and K an ideal of L . Then the quotient space

L/K := {x + K | x ∈ L}

consisting of the cosets x + K := {x + k | k ∈ K } for x ∈ L , is a Lie algebra by defining

(x+K )+ (y+K ) := (x+ y)+K and λ · (x+K ) := (λ · x)+K and [x+K , y+K ] := [x, y]+K

for all x, y ∈ L and all λ ∈ F. This is well-defined because K is an ideal, and it inherits all the
axioms directly from L . There is a surjective homomorphism π : L → L/K , x 7→ x + K of Lie
algebras called the canonical map.

Proof. Lots of little details have to be checked here. Most of it is just the standard construction of
the quotient vector space, which can be found in every book on linear algebra and we do not repeat
them here. The most important additional one is the well-definedness of the Lie product: Assume
x + K = x̃ + K and y+ K = ỹ+ K , that is, x̃ = x + k1 and ỹ = y+ k2 for some k1, k2 ∈ K . Then

[x + k1, y + k2] = [x, y] + [x, k2] + [k1, y] + [k1, k2]︸ ︷︷ ︸
∈ K

but all three latter products lie in K because K is an ideal. All statements about π are routine
verifications. �

Theorem 4.16 (First Isomorphism Theorem)
Let ϕ : L → H a homomorphism of Lie algebras over a field F and K := ker (ϕ). Then

ψ : L/K → im (ϕ)

x + K 7→ xϕ

is an isomorphism of Lie algebras.

Proof. The map ψ is well-defined since x + K = y + K is equivalent to x − y ∈ K = ker (ϕ)
and thus xϕ = yϕ. This also proves that ψ is injective, and surjectivity to the image of ϕ is obvious.
The map ψ is clearly F-linear and a homomorphism of Lie algebras because ϕ is. �

Theorem 4.17 (Second Isomorphism Theorem)
Let L be a Lie algebra, K an ideal and H a subalgebra. Then H ∩ K is an ideal of H and the map

ψ : H/(H ∩ K ) → (H + K )/K
h + (H ∩ K ) 7→ h + K

is an isomorphism of Lie algebras.
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Proof. The ideal K of L is automatically an ideal of the subalgebra H + K (see Proposi-
tion 4.12.(iii)). Define a map ψ̃ : H → (H + K )/K by setting hψ̃ := h + K . This is clearly
linear and a homomorphism of Lie algebras. Its image is all of (H + K )/K since every coset in
there has a representative in H . The kernel of ψ̃ is exactly H ∩ K and it follows that this is an ideal
in H . The First Isomorphism Theorem 4.16 then does the rest.
Alternative proof (to get more familiar with quotient arguments): The subspace H + K is a
subalgebra by Proposition 4.12.(iii) and K is an ideal in H + K because it is one even in L . The
subspace H ∩ K is an ideal in H because [h, l] ∈ H ∩ K for all h ∈ H and l ∈ H ∩ K . Thus we
can form both quotients.
The map ψ is well-defined, since if h + (H ∩ K ) = h̃ + (H ∩ K ), that is, h − h̃ ∈ H ∩ K , then in
particular h − h̃ ∈ K and thus h + K = h̃ + K . In fact, this reasoning immediately shows that ψ is
injective. The map ψ is clearly linear and a homomorphism of Lie algebras by routine verification.
It is surjective since every coset in (H + K )/K has a representative in H . �

5 Nilpotent and soluble Lie algebras
Definition 5.1 (Simple and trivial Lie algebras)
A Lie algebra L is called simple, if it is non-abelian (that is, the Lie product is not constant zero)
and has no ideals other than 0 and L . A one-dimensional Lie algebra is automatically abelian and
is called the trivial Lie algebra.

Example 5.2 (sl2 revisited)
The 3-dimensional Lie algebra L := sl2 from Section 4.6 is simple. Let

x :=
[

0 1
0 0

]
, y :=

[
0 0
1 0

]
and h :=

[
1 0
0 −1

]
,

we then have L = Span(x, y, h) and the relations

[x, y] = h and [h, x] = 2x = −[x, h] and [h, y] = −2y = −[y, h].

Let 0 6= K ≤ L be an ideal of L and 0 6= z := ax + by + ch ∈ K with a, b, c ∈ C. Then we
have [[z, x], x] = −2bx and [[z, y], y] = 2ay and thus, if either a or b is non-zero, then K = L .
If otherwise a = b = 0, then c 6= 0 since z 6= 0 and thus K = L as well because [z, x] = 2cx and
[z, y] = −2cy. Thus the only ideals of L are 0 and L itself.

Definition 5.3 (Lower central series, nilpotent Lie algebra)
Let L be a Lie algebra over a field F. We define the lower central series as L0

:= L and L i
:=

[L i−1, L] for i ≥ 1. This gives a descending sequence of ideals

L = L0
⊇ L1

= [L , L] ⊇ L2
⊇ · · ·

The Lie algebra L is called nilpotent, if there is an n ∈ N with Ln
= 0.

Exercise: Convince yourself that all L i are in fact ideals of L . Remember that [L , L] is the span of
all bracket expressions [x, y] for x, y ∈ L .

Example 5.4 (Strictly lower triangular matrices)
Every abelian Lie algebra L is nilpotent, since L1

= [L , L] = 0. No simple Lie algebra L is
nilpotent, since [L , L] is a non-zero ideal and thus equal to L . In particular, sl2 from 4.6 is not
nilpotent.
Let L be the subalgebra of Lie(Cn×n) of stricly lower triangular matrices (with zeros on the diago-
nal). Then L has dimension n(n − 1)/2 and L i is strictly smaller than L i−1 for i ≥ 1 and Ln

= 0,
thus L is nilpotent. This is proved by proving that

L i
=
{(

m j,k
)
∈ Cn×n

| m j,k = 0 if j ≤ k + i
}
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using induction. (See exercise sheet 1.)

Definition 5.5 (Derived series, soluble Lie algebra)
Let L be a Lie algebra over a field F. We then define the derived series as L (0) := L and L (i) :=
[L (i−1), L (i−1)

] for i ≥ 1. This gives a descending sequence of ideals

L = L (0) ⊇ L (1) = [L , L] ⊇ L (2) ⊇ · · ·

The Lie algebra L is called soluble, if there is an n ∈ N with L (n) = 0.
Exercise: Convince yourself that all L (i) are in fact ideals of L . Remember that [L , L] is the span
of all bracket expressions [x, y] for x, y ∈ L .

Example 5.6 (Lower triangular matrices)
Every abelian Lie algebra L is soluble, since L (1) = [L , L] = 0. No simple Lie algebra L is soluble,
since [L , L] is a non-zero ideal and thus equal to L . In particular, sl2 from 4.6 is not soluble.
Let L be the subalgebra of sl2 (see 4.6) of lower triangular matrices

L :=
{[

a 0
b −a

] ∣∣∣ a, b ∈ C
}
.

Then L (1) = [L , L] are the subset of matrices with zeros on the diagonal and L (2) = 0, thus L is
soluble. Note that it is not nilpotent.

Theorem 5.7 (Nilpotent and soluble Lie algebras)
Let L be a Lie algebra H a subalgebra and K an ideal. Then the following hold:

(i) If L is abelian, nilpotent or soluble, then the same is true for H and L/K .

(ii) If K and L/K are soluble then L is soluble, too.

(iii) If L/Z(L) is nilpotent, then so is L .

(iv) [Lk, Lm
] ≤ Lk+m for all k,m ∈ N.

(v) L (m) ≤ L2m−1
for all m ∈ N.

(vi) Every nilpotent Lie algebra is soluble.

(vii) If L is nilpotent and L 6= 0, then Z(L) 6= 0.

Proof. If L is abelian, then clearly all Lie products in H and L/K are zero as well which proves
(i) for “abelian”. For nilpotent and soluble the inclusions

H i
⊆ L i and H (i)

⊆ L (i)

and the equations

(L/K )i = {x + K | x ∈ L i
} and (L/K )(i) = {x + K | x ∈ L (i)}

immediately imply (i).
For (ii) assume that both K and L/K are soluble, that is, there are m, k ∈ N such that (L/K )(m) =
{0+ K } and K (k)

= 0. But the former directly implies L (m) ⊆ K and thus L (m+k)
= 0 which shows

that L is soluble. Note that the same proof for nilpotent does not work!
To prove (iii) assume Ln

⊆ Z(L), then Ln+1
= [Ln, L] ⊆ [Z(L), L] = 0.
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We now consider (iv). The statement holds for m = 1 by definition of Lk+1
= [Lk, L] since

[Lk, L1
] = [Lk, [L , L]] ≤ [Lk, L] = Lk+1. We now use induction on m. Suppose (iv) is true for all

m ≤ r and all k. Then

[Lk, Lr+1
] = [Lk, [Lr , L]] = [[Lr , L], Lk

]
(1)
≤ [[Lk, Lr

], L] + [[L , Lk
], Lr
]

(2)
≤ [Lk+r , L] + [Lk+1, Lr

]
(3)
≤ Lk+r+1,

where the inequality (1) follows from the Jacobi identity [[x, y], z] = −[[z, x], y] − [[y, z], x] for
all x, y, z ∈ L and (2) and (3) follow by induction.
Statement (v) now follows by induction on m. Namely, we have L (1) = [L , L] = L1

= L20
for the

induction start. Suppose L (i) ≤ L2i−1
, then L (i+1)

= [L (i), L (i)] ≤ [L2i−1
, L2i−1

] ≤ L2i−1
+2i−1
= L2i

by using (iv).
For statement (vi) suppose that L is nilpotent, that is, there is an n such that Ln

= 0 and thus all
Lk
= 0 for all k ≥ n. But then L (n) ≤ L2n−1

= 0 as well since 2n−1
≥ n for all n ≥ n. Thus L is

soluble.
Finally for statement (vii) note that the last non-zero term in the lower central series is contained in
the centre Z(L). �

Theorem 5.8 (Radical)
Let L be a Lie algebra and H1, H2 soluble ideals of L . Then H1 + H2 is a soluble ideal of L , too.
Furthermore, if L is finite-dimensional, there is a soluble ideal rad(L) of L that contains every
soluble ideal of L . It is called the radical or L .

Proof. Suppose H1 and H2 are soluble ideals. Then (H1 + H2)/H1
∼= H2/(H1 ∩ H2) by the

Second Isomorphism Theorem 4.17 and it follows from Proposition 5.7.(i) that this is soluble as
quotient of the soluble Lie algebra H2. But then H1 is an ideal of H1 + H2 such that both the
quotient (H1+ H2)/H1 and the ideal are soluble, so by Proposition 5.7.(ii) the Lie algebra H1+ H2

is soluble as well.
If L is finite-dimensional, then there is a soluble ideal K of maximal dimension. By the above rea-
soning and maximality this ideal contains every other soluble ideal and is thus uniquely determined.
It is called the radical and denoted by rad(L). �

Definition 5.9 (Semisimple Lie algebra)
A Lie algebra L over a field F is called semisimple if it has no soluble ideals other than 0.

Lemma 5.10 (Radical quotient is semisimple)
For every finite-dimensional Lie algebra L , the quotient Lie algebra L/rad(L) is semisimple.

Proof. The preimage of any soluble ideal of L/rad(L) under the canonical map L → L/rad(L)
would be a soluble ideal of L that properly contains rad(L) (use Proposition 5.7.(ii) again). �

Example 5.11 (Direct sums of simple Lie algebras are semisimple)
Every simple Lie algebra L is semisimple, since it contains no ideals other than L and 0 and L is not
soluble (see 5.6). The direct sum L1 ⊕ · · · ⊕ Lk of simple Lie algebras L1, . . . , Lk is semisimple.

Proof. By the direct sum we mean the direct sum of vector spaces with component-wise Lie
product. It is a routine verification that this makes the direct sum into a Lie algebra, such that every
summand L i is an ideal, since [L i , L j ] = 0 for i 6= j in this Lie algebra.
Assume now that K is any ideal of the sum L1 ⊕ · · · ⊕ Lk . We claim that for every summand L i

we either have L i ⊆ K or L i ∩ K = {0}. This is true, because L i ∩ K is an ideal in L i and L i is
simple. Thus, K is the (direct) sum of some of the L i . However, if K 6= {0}, then K is not soluble,
since [L i , L i ] = L i for all i and at least one L i is fully contained in K in this case. �
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In fact, we will prove the following theorem later in the course:

Theorem 5.12 (Characterisation of semisimple Lie algebras)
A Lie algebra L over C is semisimple if and only if it is the direct sum of minimal ideals which are
simple Lie algebras.

Proof. See later. �

We can now formulate the ultimate goal of this course:

Classify all finite-dimensional, semisimple Lie algebras over C up to isomorphism.

In view of the promised Theorem 5.12, this amounts to proving this theorem and classifying the
simple Lie algebras over C up to isomorphism.

6 Lie algebra representations
Definition 6.1 (Lie algebra representation)
Let L be a Lie algebra over the field F. A representation of L is a Lie algebra homomorphism

ρ : L → Lie(End(V ))

for some F-vector space V of dimension n ∈ N, which is called the degree of ρ. This means nothing
but: ρ is a linear map and

[x, y]ρ = [xρ, yρ] = (xρ) · (yρ)− (yρ) · (xρ)

for all x, y ∈ L .
Two representations ρ : L → Lie(End(V )) and ρ ′ : L → Lie(End(V ′)) of degree n are called
equivalent, if there is an invertible linear map T : V → V ′ such that (xρ) · T = T · (xρ ′) for all
x ∈ L (the dot · denotes composition of maps).

Definition 6.2 (Lie algebra module)
Let L be a Lie algebra over a field F. An L-module is a finite-dimensional F-vector space V
together with an action

V × L → V, (v, l) 7→ vl

such that

• (v + w)x = vx + wx and (λv)x = λ(vx) (the action is linear),

• v(x + y) = vx + vy, and

• v[x, y] = (vx)y − (vy)x .

for all v,w ∈ V and all x, y ∈ L and all λ ∈ F respectively.

Lemma 6.3 (Representations and modules are the same thing)
Let L be a Lie algebra over a field F. A representation ρ : L → Lie(End(F1×n)) makes the
row space F1×n into an L-module by setting vx := v(xρ). Conversely, if V is an L-module then
expressing the linear action as endomorphisms defines a representation of L of degree n.
Thus, the two concepts are two aspects of the same thing.

Proof. The first axiom in Definition 6.2 is needed to make the action of elements of L on V into
linear maps. The other two axioms are needed to make the map L → Lie(End(V )) a Lie algebra
homomorphism. The remaining details of this proof are left as an exercise to the reader. �
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Example 6.4 (A representation)
Let L be the Lie subalgebra of Lie(Cn×n) of lower triangular matrices. The map

π2 : L → End(C1×2)

[ai, j ]1≤i, j≤n 7→

[
a1,1 a1,2

a2,1 a2,2

]
(and then viewing the 2 × 2-matrices as endomorphisms of C1×2) is a Lie algebra homomorphism
and thus a representation. This makes C1×2 into an L-module.
We notice that a representation might not “see all of L”. The map π2 for example has a non-trivial
kernel.

Example 6.5 (The adjoint representation)
Let L be any Lie algebra over a field F. The adjoint representation of L is its action on itself:

ad : L → Lie(End(L))
x 7→ xad

:= (y 7→ [y, x])
.

Note that we denote the image of an element x ∈ L under the map ad by xad throughout. The map
ad is in fact a Lie algebra homomorphism and thus a representation. To verify this, we first check
that xad is a linear map from L to L for every x ∈ L:

(y + λz)xad
= [y + λz, x] = [y, x] + λ[z, x] = yxad

+ λ(zxad)

for y, z ∈ L and λ ∈ F. The map ad itself is linear, since

z(x + λy)ad
= [z, x + λy] = [z, x] + λ[z, y] = zxad

+ z(λyad)

for all x, y, z ∈ L and all λ ∈ F. Finally, the Jacobi identity shows that ad is a homomorphism of
Lie algebras:

z[x, y]ad
= [z, [x, y]] = −[x, [y, z]]−[y, [z, x]] = [[z, x], y]−[[z, y], x] = (zxad)yad

− (zyad)xad

for all x, y, z ∈ L .

Example 6.6 (One-dimensional representation)
A one-dimensional representation of a Lie algebra L over F is simply a linear map ρ : L → F with

[x, y]ρ = (xρ) · (yρ)− (yρ) · (xρ) = 0

for all x, y ∈ L since F is commutative. So the one-dimensional representations of L are precisely
the F-linear maps to F that vanish on the subspace L1

= L (1) = [L , L]. This shows for example
that the simple Lie algebra sl2 from 4.6 has only one one-dimensional representation which is the
zero map:

sl2 → C, x 7→ 0.

Anyway, the kernel of such a representation is an ideal so it can only be 0 or sl2 because sl2 is
simple. Since C is one-dimensional, the kernel cannot be 0 because of the dimension formula for
linear maps.

Definition 6.7 (Submodules, irreducible modules)
Let L be a Lie algebra over a field F and V be an L-module. A subspace W of V is called a
submodule, if it is invariant under the action of L:

wx ∈ W for all w ∈ W and x ∈ L .

A module V is called irreducible, if it has no submodules other than 0 and V itself. A module V is
the direct sum W1 ⊕ · · · ⊕Wk of submodules W1,W2, . . . ,Wk , if it is the direct vector space direct
sum of the Wi . A module V is called indecomposable if it is not the direct sum of two non-trivial
submodules.
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Remark 6.8 (Irreducible implies indecomposable)
An irreducible L-module is clearly indecomposable. However, the reverse implication does not
hold in general. There are Lie algebras with modules V that have a proper submodule 0 < W < V ,
for which there is no other submodule U with V = W ⊕U .

Remark 6.9 (Irreducible adjoint representation)
Let V := L be the L-module given by the adjoint representation (see 6.5). A submodule of V is the
same as an ideal of L . The module V is irreducible if and only if L is a simple Lie algebra.

Definition 6.10 (Homomorphisms of modules)
Let L be a Lie algebra over a field F. A homomorphism of L-modules is an F-linear map

T : V → V ′

between two L-modules V and V ′, such that (vT )x = (xv)T for all v ∈ V and all x ∈ L . It is
called an isomorphism if there is a homomorphism S : V ′→ V of L-modules with T S = idV and
ST = idV ′ .

Definition/Proposition 6.11 (Eigenvectors and eigenvalues)
Let V be an F-vector space and T : V → V a linear map. Then an eigenvalue is an element λ ∈ F,
for which a vector v ∈ V \ {0} exists with

vT = λ · v.

Every such v is called an eigenvector for the eigenvalue λ. The set of eigenvectors for the eigen-
value λ together with the zero vector is called the eigenspace for the eigenvalue λ. Note that an
eigenvector v has to be non-zero, otherwise every λ ∈ F would be an eigenvalue.
For F = C, every endomorphism T has an eigenvalue, since the characteristic polynomial of T has
a root (C is algebraically closed).

Proof. See any linear algebra book and use the fundamental theorem of algebra. �

Lemma 6.12 (Schur I)
Let V and V ′ be irreducible L-modules for a Lie algebra L over F and let T : V → V ′ be an
L-module homomorphism. Then either T maps every element of V to zero or it is an isomorphism.

Proof. The image im T and the kernel ker T of T are submodules of V ′ and V respectively. Since
both V and V ′ are irreducible, either im T = 0 and ker T = V , or im T = V ′ and ker T = 0. �

Corollary 6.13 (Schur II)
Let V be an irreducible L-module for a Lie algebra L over C and T : V → V be an L-module
homomorphism (or shorter L-endomorphism). Then T is a scalar multiple of the identity map
(possibly the zero map).

Proof. Let T : V → V be any L-endomorphism. Then T is in particular a linear map from V to
V so it has an eigenvalue λ with corresponding eigenvector v ∈ V by Proposition 6.11. Thus, the
linear map T − λ · idV has v 6= 0 in its kernel, and it is an L-endomorphism, since both T and idV

are. By Lemma 6.13, this linear map T − λ · idV must be equal to zero and thus T = λ · idV . Note
that λ (and thus T ) can be equal to 0. �

Theorem 6.14 (Weyl)
Let L be a semisimple Lie algebra over C and V a finite-dimensional L-module. Then V has
irreducible submodules W1,W2, . . . ,Wk , such that V = W1 ⊕ · · · ⊕ Wk , for some k ∈ N. That is,
V is the direct sum of irreducible submodules.

Proof. Omitted. �


