
Chapter 3

Representations of sl2

For the whole chapter let sl2 from Example 4.6, which is the C-span of the three elements

e :=
[

0 1
0 0

]
, f :=

[
0 0
1 0

]
, h :=

[
1 0
0 −1

]
with the usual commutator [a, b] := a · b − b · a as Lie product. We know that it is a simple Lie
algebra and the following relations hold (see Example 5.2):

[e, f ] = h and [h, e] = 2e = −[e, h] and [h, f ] = −2 f = −[ f, h].

We want to classify all its finite-dimensional modules. Since sl2 is simple, it is semisimple (see
Example 5.11). Thus by Weyl’s Theorem 6.14 it is enough to classify the irreducible modules,
because all others are direct sums of irreducible ones.

7 The irreducible sl2-modules introduced
Proposition 7.1 (The modules Vd)
Let d ∈ N ∪ {0} and let C[X, Y ] be the polynomial ring over C in two indeterminates X and Y . Let

Vd := Span(Xd, Xd−1Y, . . . , XY d−1, Y d),

this is a C-vector space of dimension d + 1, actually, Vd is the set of homogeneous polynomials of
total degree d. For d = 0, the vector space V0 consists of the constant polynomials and dim(V0) = 1.
The following equations together with linear extension make Vd into an sl2-module:

(XaY b)e := Y ·
∂

∂X
(XaY b) = a · Xa−1Y b+1,

(XaY b) f := X ·
∂

∂Y
(XaY b) = b · Xa+1Y b−1,

(XaY b)h := (a − b) · XaY b

all for a + b = d and 0 ≤ a, b ≤ d .

Proof. Since we can prescribe a linear map from Vd into itself arbitrarily on a basis, this defines
endomorphisms for e, f and h uniquely. Linear extension gives us a C-linear map

ϕ : sl2 → Lie(End(Vd)).

To check that this is a representation of Lie algebras we only have to check that it respects the Lie
product, that is:

v([x, y]ϕ) = (v(xϕ))(yϕ)− (v(yϕ))(xϕ)
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18 CHAPTER 3. REPRESENTATIONS OF SL2

for all v ∈ Vd and all x, y ∈ sl2. Since ϕ is C-linear and all (xϕ) are C-linear it is enough to check
all this for basis elements, that is, we have to check

(XaY b)[e, f ] = ((XaY b)e) f − ((XaY b) f )e and

(XaY b)[h, e] = ((XaY b)h)e − ((XaY b)e)h and

(XaY b)[h, f ] = ((XaY b)h) f − ((XaY b) f )h

for all 0 ≤ a, b ≤ d with a + b = d . This is left as an exercise for the reader. �

Illustration 7.2 (The action on Vd)
Pictorially, this means:
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Illustration 7.3 (The action as matrices)
If we express the action of e, f and h by matrices with respect to the monomial basis

(Xd, Xd−1Y, . . . , XY d−1, Y d)

in row convention, we get:

e ↔



0 d 0 · · · 0

0 0 d − 1
. . .

...
...

. . .
. . .

. . . 0
... 0

. . .
. . . 1

0 · · · · · · 0 0



f ↔



0 0 · · · · · · 0

1 0
. . . 0

...

0
. . .

. . .
. . .

...
...

. . . d − 1 0 0
0 · · · 0 d 0



h ↔


d 0 · · · 0

0 d − 2
. . .

...
...

. . .
. . . 0

0 · · · 0 −d


Proposition 7.4 (All Vd are irreducible)
For all d ∈ N ∪ {0}, the module Vd is irreducible.

Proof. Assume 0 < W ≤ Vd is a non-zero subspace that is invariant under the action of sl2.
The endomorphism of W induced by the action of h has an eigenvalue λ with a corresponding
eigenvector 0 6= w ∈ W (see Proposition 6.11). Since h has 1-dimensional eigenspaces spanned
by the monomials Xd, XY d−1, . . . , Y d , the vector w is a scalar multiple of one of these. But then
the subspace W contains all such monomials since successive applications of e and f map one to
some non-zero scalar multiple of every other one. Thus W = Vd and we have proved that Vd is
irreducible. �
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8 Every irreducible sl2-module is isomorphic to one of the Vd

Lemma 8.1 (Eigenvectors to different eigenvalues are linearly independent)
Let V be an F-vector space and ϕ ∈ End(V ) an arbitrary endomorphism. Let (v1, v2, . . . , vn)

be a tuple of eigenvectors of ϕ to pairwise different eigenvalues λ1, λ2, . . . , λn respectively. Then
(v1, . . . , vn) is linearly independent.

Proof. Assume for a contradiction that (v1, . . . , vn) is linearly dependent. Let k ∈ N be minimal
such that (v1, . . . , vk) is linearly independent and vk+1 ∈ Span(v1, . . . , vk). We have k ≥ 1 because
eigenvectors are non-zero and k < n because of our assumption. If vk+1 =

∑k
i=1 µivi for some

µi ∈ F, then

k∑
i=1

λi · µivi =

k∑
i=1

(µivi )ϕ = vk+1ϕ = λk+1 · vk+1 =

k∑
i=1

λk+1 · µivi ,

which is a contradiction since (v1, . . . , vk) is linearly independent and the eigenvalues are pairwise
different. �

Lemma 8.2 (Eigenvectors in sl2-modules)
Let V be an sl2-module over C and λ be an eigenvalue of h with eigenvector v ∈ V .

• Either ve = 0 or ve is an eigenvector of h for the eigenvalue λ− 2.

• Either v f = 0 or v f is an eigenvector of h for the eigenvalue λ+ 2.

Proof. By the module axioms and the relations [h, e] = 2e and [h, f ] = −2 f , we get:

(ve)h = (vh)e − v[h, e] = λ · (ve)− v · (2e) = (λ− 2) · (ve)

(v f )h = (vh) f − v[h, f ] = λ · (v f )+ v · (2 f ) = (λ+ 2) · (v f )

This proves the lemma, since eigenvectors have to be non-zero by definition. �

Lemma 8.3 (Highest weights)
Let V be a finite-dimensional sl2-module over C. Then V contains an eigenvector w of h such that
w f = 0.

Proof. Since we work over the complex numbers C, the endomorphism of V induced by h has
an eigenvalue λ with corresponding eigenvector v (see Proposition 6.11). We consider the sequence

v, v f, v f 2, . . . , v f k, . . . ,

where v f k stands for the vector one gets by acting repeatedly with f altogether k times. By
Lemma 8.2 these are all either equal to zero or are eigenvectors of h to different eigenvalues,
namely λ, λ + 2, λ + 4, . . .. If they were all non-zero, then they would all be linearly indepen-
dent by Lemma 8.1, which can not be true since V is finite-dimensional. Thus there is a k with
v f k
6= 0 and v f k+1

= 0, the vector w := v f k is an eigenvector of h with w f = 0. �

Definition 8.4 (Highest weight vector)
A vector w as in Lemma 8.3 is called a highest weight vector of the sl2-module V and its corre-
sponding eigenvalue is called a highest weight. We shall extend this definition later.

We are now in a position to prove the main result of this chapter:

Theorem 8.5 (Classification of finite-dimensional irreducible sl2-modules)
Let V be an irreducible sl2-module of dimension d + 1, then V is isomorphic to Vd .
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Proof. Since V is finite-dimensional over C, the endomorphism h of V has an eigenvector w
with w f = 0 be Lemma 8.3. Let λ be the corresponding eigenvalue. We consider the sequence

w,we, we2, . . .

where wek stands for the vector one gets by acting repeatedly with e altogether k times. By
Lemma 8.2 these are all either equal to 0 or eigenvectors of h with eigenvalues λ, λ− 2, λ− 4, . . .
respectively. As in the proof of Lemma 8.3 we conclude that there is a k with wek+1

= 0 and
wek
6= 0.

We claim that W := Span(w,we, we2, . . . , wek) is an sl2-submodule of V and that

B := (w,we, . . . , wek)

is a basis. All these vectors are eigenvectors of h, so W is invariant under h. By construction
and because of wek+1

= 0 the space W is invariant under e. Note that Span(w,we, . . . , wei )e =
Span(w,we, . . . , wei+1).
Invariance under f comes from the fact that

(wei ) f = (wei−1)e f − (wei−1) f e + (wei−1) f e = (wei−1)h + ((wei−1) f )e for 1 ≤ i ≤ k

and w f = 0 using induction by i . We have shown that W is invariant under h, e and f and thus
under all elements of sl2. Since W is non-zero and V is irreducible, we have W = V . Since
B = (w,we, . . . , wek) is linearly independent by Lemma 8.1, it is a basis of W and thus of V and
we conclude k = d because dim(V ) = d + 1.
With respect to the basis B the endomorphism induced by h is a diagonal matrix with diagonal
entries λ, λ − 2, . . . , λ − 2d , thus its trace is equal to λ · (d + 1) − d(d + 1) (recall that

∑d
i=0 =

d(d + 1)/2). But since h = [e, f ] this trace is zero, from which follows λ = d. The eigenvalues of
h in its action on V are therefore d, d − 2, d − 4, . . . , 4− d, 2− d,−d .
We now modify our basis B of V slightly to show that the action of sl2 on V is the same as the one on
Vd . Let w0 := w and wi+1 :=

1
d−i ·wi e for 0 ≤ i < d , forming a new basis B ′ := (w0, w1, . . . , wd)

of V .
With respect to this basis, the endomorphisms induced by the action of h and e are exactly as in
Illustration 7.3, since we have

wi h = (d − 2i)wi and wi e = (d − i)wi+1

for 0 ≤ i ≤ d where wd+1 := 0. We claim that the same holds for the endomorphism induced
by the action of f . We have w0 f = w f = 0 so the first row is zero. Furthermore, we claim that
wi f = iwi−1 for 1 ≤ i ≤ d . This follows by induction using a similar computation as above, we
have

wi+1 f =
1

d − i
wi e f =

1
d − i

(wi h + (wi f )e) =
1

d − i
((d − 2i)wi + iwi−1e)

=
d − 2i + i(d + 1− i)

d − i
wi =

id − i2
+ d − i

d − i
wi = (i + 1)wi

for 0 ≤ i < d where w−1 := 0.
Since the action of h, e and f , and thus of all elements of sl2, are the same with respect to the bases
(Xd, Xd−1Y, . . . , XY d−1, Y d) of Vd and B ′ of V , the linear map Xd−i Y i

7→ wi is an isomorphism
of Vd onto V , proving the theorem. �

Because of Weyl’s Theorem we have thus proved:

Theorem 8.6 (Representations of sl2(C))
Let V be a finite-dimensional sl2(C)-module. Then V has irreducible submodules W1,W2, . . . ,Wk ,
for some k ∈ N, such that V = W1 ⊕ W2 ⊕ · · · ⊕ Wk and there are numbers d1, . . . , dk ∈ N ∪ {0}
such that Wi

∼= Vdi . �


