Chapter 3

Representations of sl_{2}

For the whole chapter let sl_{2} from Example 4.6 , which is the \mathbb{C}-span of the three elements

$$
e:=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad f:=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad h:=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

with the usual commutator $[a, b]:=a \cdot b-b \cdot a$ as Lie product. We know that it is a simple Lie algebra and the following relations hold (see Example 5.2):

$$
[e, f]=h \quad \text { and } \quad[h, e]=2 e=-[e, h] \quad \text { and } \quad[h, f]=-2 f=-[f, h]
$$

We want to classify all its finite-dimensional modules. Since sl_{2} is simple, it is semisimple (see Example 5.11). Thus by Weyl's Theorem 6.14 it is enough to classify the irreducible modules, because all others are direct sums of irreducible ones.

7 The irreducible sl_{2}-modules introduced

Proposition 7.1 (The modules V_{d})

Let $d \in \mathbb{N} \cup\{0\}$ and let $\mathbb{C}[X, Y]$ be the polynomial ring over \mathbb{C} in two indeterminates X and Y. Let

$$
V_{d}:=\operatorname{Span}\left(X^{d}, X^{d-1} Y, \ldots, X Y^{d-1}, Y^{d}\right)
$$

this is a \mathbb{C}-vector space of dimension $d+1$, actually, V_{d} is the set of homogeneous polynomials of total degree d. For $d=0$, the vector space V_{0} consists of the constant polynomials and $\operatorname{dim}\left(V_{0}\right)=1$. The following equations together with linear extension make V_{d} into an sl_{2}-module:

$$
\begin{aligned}
\left(X^{a} Y^{b}\right) e & :=Y \cdot \frac{\partial}{\partial X}\left(X^{a} Y^{b}\right)=a \cdot X^{a-1} Y^{b+1} \\
\left(X^{a} Y^{b}\right) f & :=X \cdot \frac{\partial}{\partial Y}\left(X^{a} Y^{b}\right)=b \cdot X^{a+1} Y^{b-1} \\
\left(X^{a} Y^{b}\right) h & :=(a-b) \cdot X^{a} Y^{b}
\end{aligned}
$$

all for $a+b=d$ and $0 \leq a, b \leq d$.
Proof. Since we can prescribe a linear map from V_{d} into itself arbitrarily on a basis, this defines endomorphisms for e, f and h uniquely. Linear extension gives us a \mathbb{C}-linear map

$$
\varphi: \mathrm{sl}_{2} \rightarrow \operatorname{Lie}\left(\operatorname{End}\left(V_{d}\right)\right)
$$

To check that this is a representation of Lie algebras we only have to check that it respects the Lie product, that is:

$$
v([x, y] \varphi)=(v(x \varphi))(y \varphi)-(v(y \varphi))(x \varphi)
$$

for all $v \in V_{d}$ and all $x, y \in \operatorname{sl}_{2}$. Since φ is \mathbb{C}-linear and all $(x \varphi)$ are \mathbb{C}-linear it is enough to check all this for basis elements, that is, we have to check

$$
\begin{aligned}
\left(X^{a} Y^{b}\right)[e, f] & =\left(\left(X^{a} Y^{b}\right) e\right) f-\left(\left(X^{a} Y^{b}\right) f\right) e \quad \text { and } \\
\left(X^{a} Y^{b}\right)[h, e] & =\left(\left(X^{a} Y^{b}\right) h\right) e-\left(\left(X^{a} Y^{b}\right) e\right) h \quad \text { and } \\
\left(X^{a} Y^{b}\right)[h, f] & =\left(\left(X^{a} Y^{b}\right) h\right) f-\left(\left(X^{a} Y^{b}\right) f\right) h
\end{aligned}
$$

for all $0 \leq a, b \leq d$ with $a+b=d$. This is left as an exercise for the reader.

Illustration 7.2 (The action on V_{d})

Pictorially, this means:

Illustration 7.3 (The action as matrices)

If we express the action of e, f and h by matrices with respect to the monomial basis

$$
\left(X^{d}, X^{d-1} Y, \ldots, X Y^{d-1}, Y^{d}\right)
$$

in row convention, we get:

$$
\begin{aligned}
& e \leftrightarrow\left[\begin{array}{ccccc}
0 & d & 0 & \cdots & 0 \\
0 & 0 & d-1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
\vdots & 0 & \ddots & \ddots & 1 \\
0 & \cdots & \cdots & 0 & 0
\end{array}\right] \\
& f \leftrightarrow\left[\begin{array}{ccccc}
0 & 0 & \cdots & \cdots & 0 \\
1 & 0 & \ddots & 0 & \vdots \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & d-1 & 0 & 0 \\
0 & \cdots & 0 & d & 0
\end{array}\right] \\
& h
\end{aligned} \underbrace{}_{\left[\begin{array}{cccc}
d & 0 & \cdots & 0 \\
0 & d-2 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & -d
\end{array}\right]}
$$

Proposition 7.4 (All V_{d} are irreducible)

For all $d \in \mathbb{N} \cup\{0\}$, the module V_{d} is irreducible.
Proof. Assume $0<W \leq V_{d}$ is a non-zero subspace that is invariant under the action of sl_{2}. The endomorphism of W induced by the action of h has an eigenvalue λ with a corresponding eigenvector $0 \neq w \in W$ (see Proposition 6.11). Since h has 1-dimensional eigenspaces spanned by the monomials $X^{d}, X Y^{d-1}, \ldots, Y^{d}$, the vector w is a scalar multiple of one of these. But then the subspace W contains all such monomials since successive applications of e and f map one to some non-zero scalar multiple of every other one. Thus $W=V_{d}$ and we have proved that V_{d} is irreducible.

8 Every irreducible sl2-module is isomorphic to one of the V_{d}

Lemma 8.1 (Eigenvectors to different eigenvalues are linearly independent)

Let V be an \mathbb{F}-vector space and $\varphi \in \operatorname{End}(V)$ an arbitrary endomorphism. Let $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a tuple of eigenvectors of φ to pairwise different eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ respectively. Then $\left(v_{1}, \ldots, v_{n}\right)$ is linearly independent.

Proof. Assume for a contradiction that $\left(v_{1}, \ldots, v_{n}\right)$ is linearly dependent. Let $k \in \mathbb{N}$ be minimal such that $\left(v_{1}, \ldots, v_{k}\right)$ is linearly independent and $v_{k+1} \in \operatorname{Span}\left(v_{1}, \ldots, v_{k}\right)$. We have $k \geq 1$ because eigenvectors are non-zero and $k<n$ because of our assumption. If $v_{k+1}=\sum_{i=1}^{k} \mu_{i} v_{i}$ for some $\mu_{i} \in \mathbb{F}$, then

$$
\sum_{i=1}^{k} \lambda_{i} \cdot \mu_{i} v_{i}=\sum_{i=1}^{k}\left(\mu_{i} v_{i}\right) \varphi=v_{k+1} \varphi=\lambda_{k+1} \cdot v_{k+1}=\sum_{i=1}^{k} \lambda_{k+1} \cdot \mu_{i} v_{i}
$$

which is a contradiction since $\left(v_{1}, \ldots, v_{k}\right)$ is linearly independent and the eigenvalues are pairwise different.

Lemma 8.2 (Eigenvectors in sl_{2}-modules)

Let V be an sl_{2}-module over \mathbb{C} and λ be an eigenvalue of h with eigenvector $v \in V$.

- Either ve $=0$ or $v e$ is an eigenvector of h for the eigenvalue $\lambda-2$.
- Either $v f=0$ or $v f$ is an eigenvector of h for the eigenvalue $\lambda+2$.

Proof. By the module axioms and the relations $[h, e]=2 e$ and $[h, f]=-2 f$, we get:

$$
\begin{aligned}
& (v e) h=(v h) e-v[h, e]=\lambda \cdot(v e)-v \cdot(2 e)=(\lambda-2) \cdot(v e) \\
& (v f) h=(v h) f-v[h, f]=\lambda \cdot(v f)+v \cdot(2 f)=(\lambda+2) \cdot(v f)
\end{aligned}
$$

This proves the lemma, since eigenvectors have to be non-zero by definition.

Lemma 8.3 (Highest weights)

Let V be a finite-dimensional sl_{2}-module over \mathbb{C}. Then V contains an eigenvector w of h such that $w f=0$.

Proof. Since we work over the complex numbers \mathbb{C}, the endomorphism of V induced by h has an eigenvalue λ with corresponding eigenvector v (see Proposition 6.11). We consider the sequence

$$
v, v f, v f^{2}, \ldots, v f^{k}, \ldots
$$

where $v f^{k}$ stands for the vector one gets by acting repeatedly with f altogether k times. By Lemma 8.2 these are all either equal to zero or are eigenvectors of h to different eigenvalues, namely $\lambda, \lambda+2, \lambda+4, \ldots$. If they were all non-zero, then they would all be linearly independent by Lemma 8.1, which can not be true since V is finite-dimensional. Thus there is a k with $v f^{k} \neq 0$ and $v f^{k+1}=0$, the vector $w:=v f^{k}$ is an eigenvector of h with $w f=0$.

Definition 8.4 (Highest weight vector)

A vector w as in Lemma 8.3 is called a highest weight vector of the sl_{2}-module V and its corresponding eigenvalue is called a highest weight. We shall extend this definition later.

We are now in a position to prove the main result of this chapter:
Theorem 8.5 (Classification of finite-dimensional irreducible sl_{2}-modules)
Let V be an irreducible sl_{2}-module of dimension $d+1$, then V is isomorphic to V_{d}.

Proof. \quad Since V is finite-dimensional over \mathbb{C}, the endomorphism h of V has an eigenvector w with $w f=0$ be Lemma 8.3. Let λ be the corresponding eigenvalue. We consider the sequence

$$
w, w e, w e^{2}, \ldots
$$

where $w e^{k}$ stands for the vector one gets by acting repeatedly with e altogether k times. By Lemma 8.2 these are all either equal to 0 or eigenvectors of h with eigenvalues $\lambda, \lambda-2, \lambda-4, \ldots$ respectively. As in the proof of Lemma 8.3 we conclude that there is a k with $w e^{k+1}=0$ and $w e^{k} \neq 0$.
We claim that $W:=\operatorname{Span}\left(w, w e, w e^{2}, \ldots, w e^{k}\right)$ is an sl_{2}-submodule of V and that

$$
\mathscr{B}:=\left(w, w e, \ldots, w e^{k}\right)
$$

is a basis. All these vectors are eigenvectors of h, so W is invariant under h. By construction and because of $w e^{k+1}=0$ the space W is invariant under e. Note that $\operatorname{Span}\left(w, w e, \ldots, w e^{i}\right) e=$ $\operatorname{Span}\left(w, w e, \ldots, w e^{i+1}\right)$.
Invariance under f comes from the fact that

$$
\left(w e^{i}\right) f=\left(w e^{i-1}\right) e f-\left(w e^{i-1}\right) f e+\left(w e^{i-1}\right) f e=\left(w e^{i-1}\right) h+\left(\left(w e^{i-1}\right) f\right) e \quad \text { for } 1 \leq i \leq k
$$

and $w f=0$ using induction by i. We have shown that W is invariant under h, e and f and thus under all elements of sl_{2}. Since W is non-zero and V is irreducible, we have $W=V$. Since $\mathscr{B}=\left(w, w e, \ldots, w e^{k}\right)$ is linearly independent by Lemma 8.1, it is a basis of W and thus of V and we conclude $k=d$ because $\operatorname{dim}(V)=d+1$.
With respect to the basis \mathscr{B} the endomorphism induced by h is a diagonal matrix with diagonal entries $\lambda, \lambda-2, \ldots, \lambda-2 d$, thus its trace is equal to $\lambda \cdot(d+1)-d(d+1)$ (recall that $\sum_{i=0}^{d}=$ $d(d+1) / 2)$. But since $h=[e, f]$ this trace is zero, from which follows $\lambda=d$. The eigenvalues of h in its action on V are therefore $d, d-2, d-4, \ldots, 4-d, 2-d,-d$.
We now modify our basis \mathscr{B} of V slightly to show that the action of sl_{2} on V is the same as the one on V_{d}. Let $w_{0}:=w$ and $w_{i+1}:=\frac{1}{d-i} \cdot w_{i} e$ for $0 \leq i<d$, forming a new basis $\mathscr{B}^{\prime}:=\left(w_{0}, w_{1}, \ldots, w_{d}\right)$ of V.
With respect to this basis, the endomorphisms induced by the action of h and e are exactly as in Illustration 7.3, since we have

$$
w_{i} h=(d-2 i) w_{i} \quad \text { and } \quad w_{i} e=(d-i) w_{i+1}
$$

for $0 \leq i \leq d$ where $w_{d+1}:=0$. We claim that the same holds for the endomorphism induced by the action of f. We have $w_{0} f=w f=0$ so the first row is zero. Furthermore, we claim that $w_{i} f=i w_{i-1}$ for $1 \leq i \leq d$. This follows by induction using a similar computation as above, we have

$$
\begin{aligned}
w_{i+1} f & =\frac{1}{d-i} w_{i} e f=\frac{1}{d-i}\left(w_{i} h+\left(w_{i} f\right) e\right)=\frac{1}{d-i}\left((d-2 i) w_{i}+i w_{i-1} e\right) \\
& =\frac{d-2 i+i(d+1-i)}{d-i} w_{i}=\frac{i d-i^{2}+d-i}{d-i} w_{i}=(i+1) w_{i}
\end{aligned}
$$

for $0 \leq i<d$ where $w_{-1}:=0$.
Since the action of h, e and f, and thus of all elements of sl_{2}, are the same with respect to the bases $\left(X^{d}, X^{d-1} Y, \ldots, X Y^{d-1}, Y^{d}\right)$ of V_{d} and \mathscr{B}^{\prime} of V, the linear map $X^{d-i} Y^{i} \mapsto w_{i}$ is an isomorphism of V_{d} onto V, proving the theorem.

Because of Weyl's Theorem we have thus proved:
Theorem 8.6 (Representations of $\mathrm{sl}_{2}(\mathbb{C})$)
Let V be a finite-dimensional $\mathrm{sl}_{2}(\mathbb{C})$-module. Then V has irreducible submodules $W_{1}, W_{2}, \ldots, W_{k}$, for some $k \in \mathbb{N}$, such that $V=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k}$ and there are numbers $d_{1}, \ldots, d_{k} \in \mathbb{N} \cup\{0\}$ such that $W_{i} \cong V_{d_{i}}$.

