## **Chapter 3**

# **Representations of** sl<sub>2</sub>

For the whole chapter let  $sl_2$  from Example 4.6, which is the  $\mathbb{C}$ -span of the three elements

$$e := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad f := \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad h := \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

with the usual commutator  $[a, b] := a \cdot b - b \cdot a$  as Lie product. We know that it is a simple Lie algebra and the following relations hold (see Example 5.2):

$$[e, f] = h$$
 and  $[h, e] = 2e = -[e, h]$  and  $[h, f] = -2f = -[f, h]$ 

We want to classify all its finite-dimensional modules. Since  $sl_2$  is simple, it is semisimple (see Example 5.11). Thus by Weyl's Theorem 6.14 it is enough to classify the irreducible modules, because all others are direct sums of irreducible ones.

## 7 The irreducible sl<sub>2</sub>-modules introduced

### **Proposition 7.1** (The modules $V_d$ )

Let  $d \in \mathbb{N} \cup \{0\}$  and let  $\mathbb{C}[X, Y]$  be the polynomial ring over  $\mathbb{C}$  in two indeterminates X and Y. Let

$$V_d := \operatorname{Span}(X^d, X^{d-1}Y, \dots, XY^{d-1}, Y^d),$$

this is a  $\mathbb{C}$ -vector space of dimension d + 1, actually,  $V_d$  is the set of homogeneous polynomials of total degree d. For d = 0, the vector space  $V_0$  consists of the constant polynomials and dim $(V_0) = 1$ . The following equations together with linear extension make  $V_d$  into an sl<sub>2</sub>-module:

$$(X^{a}Y^{b})e := Y \cdot \frac{\partial}{\partial X}(X^{a}Y^{b}) = a \cdot X^{a-1}Y^{b+1},$$
  

$$(X^{a}Y^{b})f := X \cdot \frac{\partial}{\partial Y}(X^{a}Y^{b}) = b \cdot X^{a+1}Y^{b-1},$$
  

$$(X^{a}Y^{b})h := (a-b) \cdot X^{a}Y^{b}$$

all for a + b = d and  $0 \le a, b \le d$ .

**Proof.** Since we can prescribe a linear map from  $V_d$  into itself arbitrarily on a basis, this defines endomorphisms for *e*, *f* and *h* uniquely. Linear extension gives us a  $\mathbb{C}$ -linear map

$$\varphi: \mathrm{sl}_2 \to \mathrm{Lie}(\mathrm{End}(V_d)).$$

To check that this is a representation of Lie algebras we only have to check that it respects the Lie product, that is:

$$v([x, y]\varphi) = (v(x\varphi))(y\varphi) - (v(y\varphi))(x\varphi)$$

for all  $v \in V_d$  and all  $x, y \in sl_2$ . Since  $\varphi$  is  $\mathbb{C}$ -linear and all  $(x\varphi)$  are  $\mathbb{C}$ -linear it is enough to check all this for basis elements, that is, we have to check

$$(X^{a}Y^{b})[e, f] = ((X^{a}Y^{b})e)f - ((X^{a}Y^{b})f)e \text{ and} (X^{a}Y^{b})[h, e] = ((X^{a}Y^{b})h)e - ((X^{a}Y^{b})e)h \text{ and} (X^{a}Y^{b})[h, f] = ((X^{a}Y^{b})h)f - ((X^{a}Y^{b})f)h$$

for all  $0 \le a, b \le d$  with a + b = d. This is left as an exercise for the reader.

## **Illustration 7.2** (The action on $V_d$ )

Pictorially, this means:



## Illustration 7.3 (The action as matrices)

If we express the action of e, f and h by matrices with respect to the monomial basis

$$(X^{d}, X^{d-1}Y, \dots, XY^{d-1}, Y^{d})$$

in row convention, we get:

$$e \iff \begin{bmatrix} 0 & d & 0 & \cdots & 0 \\ 0 & 0 & d-1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & 0 & \cdots & 0 & 0 \\ \vdots & 0 & \cdots & 0 & 0 \\ 0 & \cdots & \cdots & 0 & 0 \\ 1 & 0 & \ddots & 0 & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & d-1 & 0 & 0 \\ 0 & \cdots & 0 & d & 0 \\ 0 & \cdots & 0 & d & 0 \\ d & 0 & \cdots & 0 \\ 0 & d-2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -d \end{bmatrix}$$

## **Proposition 7.4 (All** $V_d$ are irreducible)

For all  $d \in \mathbb{N} \cup \{0\}$ , the module  $V_d$  is irreducible.

**Proof.** Assume  $0 < W \le V_d$  is a non-zero subspace that is invariant under the action of  $sl_2$ . The endomorphism of W induced by the action of h has an eigenvalue  $\lambda$  with a corresponding eigenvector  $0 \ne w \in W$  (see Proposition 6.11). Since h has 1-dimensional eigenspaces spanned by the monomials  $X^d$ ,  $XY^{d-1}$ , ...,  $Y^d$ , the vector w is a scalar multiple of one of these. But then the subspace W contains all such monomials since successive applications of e and f map one to some non-zero scalar multiple of every other one. Thus  $W = V_d$  and we have proved that  $V_d$  is irreducible.

## 8 Every irreducible $sl_2$ -module is isomorphic to one of the $V_d$

## Lemma 8.1 (Eigenvectors to different eigenvalues are linearly independent)

Let V be an  $\mathbb{F}$ -vector space and  $\varphi \in \text{End}(V)$  an arbitrary endomorphism. Let  $(v_1, v_2, \ldots, v_n)$  be a tuple of eigenvectors of  $\varphi$  to pairwise different eigenvalues  $\lambda_1, \lambda_2, \ldots, \lambda_n$  respectively. Then  $(v_1, \ldots, v_n)$  is linearly independent.

**Proof.** Assume for a contradiction that  $(v_1, \ldots, v_n)$  is linearly dependent. Let  $k \in \mathbb{N}$  be minimal such that  $(v_1, \ldots, v_k)$  is linearly independent and  $v_{k+1} \in \text{Span}(v_1, \ldots, v_k)$ . We have  $k \ge 1$  because eigenvectors are non-zero and k < n because of our assumption. If  $v_{k+1} = \sum_{i=1}^{k} \mu_i v_i$  for some  $\mu_i \in \mathbb{F}$ , then

$$\sum_{i=1}^k \lambda_i \cdot \mu_i v_i = \sum_{i=1}^k (\mu_i v_i) \varphi = v_{k+1} \varphi = \lambda_{k+1} \cdot v_{k+1} = \sum_{i=1}^k \lambda_{k+1} \cdot \mu_i v_i,$$

which is a contradiction since  $(v_1, \ldots, v_k)$  is linearly independent and the eigenvalues are pairwise different.

## Lemma 8.2 (Eigenvectors in sl<sub>2</sub>-modules)

Let *V* be an sl<sub>2</sub>-module over  $\mathbb{C}$  and  $\lambda$  be an eigenvalue of *h* with eigenvector  $v \in V$ .

- Either ve = 0 or ve is an eigenvector of h for the eigenvalue  $\lambda 2$ .
- Either vf = 0 or vf is an eigenvector of h for the eigenvalue  $\lambda + 2$ .

**Proof.** By the module axioms and the relations [h, e] = 2e and [h, f] = -2f, we get:

$$(ve)h = (vh)e - v[h, e] = \lambda \cdot (ve) - v \cdot (2e) = (\lambda - 2) \cdot (ve) (vf)h = (vh)f - v[h, f] = \lambda \cdot (vf) + v \cdot (2f) = (\lambda + 2) \cdot (vf)$$

This proves the lemma, since eigenvectors have to be non-zero by definition.

#### Lemma 8.3 (Highest weights)

Let V be a finite-dimensional sl<sub>2</sub>-module over  $\mathbb{C}$ . Then V contains an eigenvector w of h such that wf = 0.

**Proof.** Since we work over the complex numbers  $\mathbb{C}$ , the endomorphism of V induced by h has an eigenvalue  $\lambda$  with corresponding eigenvector v (see Proposition 6.11). We consider the sequence

$$v, vf, vf^2, \ldots, vf^k, \ldots,$$

where  $vf^k$  stands for the vector one gets by acting repeatedly with f altogether k times. By Lemma 8.2 these are all either equal to zero or are eigenvectors of h to different eigenvalues, namely  $\lambda, \lambda + 2, \lambda + 4, \ldots$  If they were all non-zero, then they would all be linearly independent by Lemma 8.1, which can not be true since V is finite-dimensional. Thus there is a k with  $vf^k \neq 0$  and  $vf^{k+1} = 0$ , the vector  $w := vf^k$  is an eigenvector of h with wf = 0.

#### **Definition 8.4 (Highest weight vector)**

A vector w as in Lemma 8.3 is called a **highest weight vector** of the sl<sub>2</sub>-module V and its corresponding eigenvalue is called a **highest weight**. We shall extend this definition later.

We are now in a position to prove the main result of this chapter:

#### **Theorem 8.5 (Classification of finite-dimensional irreducible** sl<sub>2</sub>-modules)

Let V be an irreducible sl<sub>2</sub>-module of dimension d + 1, then V is isomorphic to  $V_d$ .

**Proof.** Since V is finite-dimensional over  $\mathbb{C}$ , the endomorphism h of V has an eigenvector w with wf = 0 be Lemma 8.3. Let  $\lambda$  be the corresponding eigenvalue. We consider the sequence

$$w, we, we^2, \ldots$$

where  $we^k$  stands for the vector one gets by acting repeatedly with *e* altogether *k* times. By Lemma 8.2 these are all either equal to 0 or eigenvectors of *h* with eigenvalues  $\lambda$ ,  $\lambda - 2$ ,  $\lambda - 4$ , ... respectively. As in the proof of Lemma 8.3 we conclude that there is a *k* with  $we^{k+1} = 0$  and  $we^k \neq 0$ .

We claim that  $W := \text{Span}(w, we, we^2, \dots, we^k)$  is an sl<sub>2</sub>-submodule of V and that

$$\mathcal{B} := (w, we, \dots, we^k)$$

is a basis. All these vectors are eigenvectors of h, so W is invariant under h. By construction and because of  $we^{k+1} = 0$  the space W is invariant under e. Note that  $\text{Span}(w, we, \dots, we^i)e =$  $\text{Span}(w, we, \dots, we^{i+1})$ .

Invariance under f comes from the fact that

$$(we^{i})f = (we^{i-1})ef - (we^{i-1})fe + (we^{i-1})fe = (we^{i-1})h + ((we^{i-1})f)e \text{ for } 1 \le i \le k$$

and wf = 0 using induction by *i*. We have shown that *W* is invariant under *h*, *e* and *f* and thus under all elements of sl<sub>2</sub>. Since *W* is non-zero and *V* is irreducible, we have W = V. Since  $\mathcal{B} = (w, we, ..., we^k)$  is linearly independent by Lemma 8.1, it is a basis of *W* and thus of *V* and we conclude k = d because dim(V) = d + 1.

With respect to the basis  $\mathcal{B}$  the endomorphism induced by *h* is a diagonal matrix with diagonal entries  $\lambda, \lambda - 2, ..., \lambda - 2d$ , thus its trace is equal to  $\lambda \cdot (d + 1) - d(d + 1)$  (recall that  $\sum_{i=0}^{d} = d(d + 1)/2$ ). But since h = [e, f] this trace is zero, from which follows  $\lambda = d$ . The eigenvalues of *h* in its action on *V* are therefore d, d - 2, d - 4, ..., 4 - d, 2 - d, -d.

We now modify our basis  $\mathcal{B}$  of V slightly to show that the action of  $sl_2$  on V is the same as the one on  $V_d$ . Let  $w_0 := w$  and  $w_{i+1} := \frac{1}{d-i} \cdot w_i e$  for  $0 \le i < d$ , forming a new basis  $\mathcal{B}' := (w_0, w_1, \ldots, w_d)$  of V.

With respect to this basis, the endomorphisms induced by the action of h and e are exactly as in Illustration 7.3, since we have

$$w_i h = (d - 2i)w_i$$
 and  $w_i e = (d - i)w_{i+1}$ 

for  $0 \le i \le d$  where  $w_{d+1} := 0$ . We claim that the same holds for the endomorphism induced by the action of f. We have  $w_0 f = wf = 0$  so the first row is zero. Furthermore, we claim that  $w_i f = i w_{i-1}$  for  $1 \le i \le d$ . This follows by induction using a similar computation as above, we have

$$w_{i+1}f = \frac{1}{d-i}w_i ef = \frac{1}{d-i}(w_i h + (w_i f)e) = \frac{1}{d-i}((d-2i)w_i + iw_{i-1}e)$$
$$= \frac{d-2i + i(d+1-i)}{d-i}w_i = \frac{id-i^2 + d-i}{d-i}w_i = (i+1)w_i$$

for  $0 \le i < d$  where  $w_{-1} := 0$ .

Since the action of *h*, *e* and *f*, and thus of all elements of  $sl_2$ , are the same with respect to the bases  $(X^d, X^{d-1}Y, \ldots, XY^{d-1}, Y^d)$  of  $V_d$  and  $\mathcal{B}'$  of *V*, the linear map  $X^{d-i}Y^i \mapsto w_i$  is an isomorphism of  $V_d$  onto *V*, proving the theorem.

Because of Weyl's Theorem we have thus proved:

#### **Theorem 8.6 (Representations of** $sl_2(\mathbb{C})$ )

Let *V* be a finite-dimensional  $sl_2(\mathbb{C})$ -module. Then *V* has irreducible submodules  $W_1, W_2, \ldots, W_k$ , for some  $k \in \mathbb{N}$ , such that  $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$  and there are numbers  $d_1, \ldots, d_k \in \mathbb{N} \cup \{0\}$  such that  $W_i \cong V_{d_i}$ .