Chapter 4

Engel’s and Lie’s Theorems

9 Engel’s Theorem on nilpotent Lie algebras

Definition 9.1 (Nilpotent elements)

Let V be a vector space and T € End(V) an endomorphism. Then T is called nilpotent, if there is
a k € N such that 7% = 0 (the zero map).

Let L be a Lie algebra and x € L. Then x is called ad-nilpotent, if x* € End(L) is nilpotent.
Note that this means that (x!)¥ = 0 for some k € N and this uses the regular composition of maps
rather than the Lie product!

Proposition 9.2 (Eigenvalues of nilpotent elements)
Let V be a finite-dimensional vector space over [F and T € End(V) be nilpotent. Then 0 is the only
eigenvalue of 7.

Proof. Let A be an eigenvalue with eigenvector 0 # v € V and let k € N with T¥ = 0. Then
0 = vT* = A*v so A¥ = 0 and thus A = 0 since F is a field. However, 0 is an eigenvalue since 7T is
not invertible. |

In this section we want to prove the following theorem:

Theorem 9.3 (Engel)
Let L be a finite-dimensional Lie algebra over a field F. Then L is nilpotent if and only if every
element x of L is ad-nilpotent.

We only prove the “only-if”’-part here, the “if”’-part is proved in the rest of this section.

Proof. If L is nilpotent, then there is a k such that L*¥ = 0. This means in particular that every
expression
([ - - [[x0, x1], x2], - - 1, ;] = O

for arbitrary elements xo, X1, ..., xx € L. This implies immediately that
x4 x4 x¥ =0 € End(L)

and in particular that (x*)* = 0 for all x € L. So every element x of L is ad-nilpotent. |
We first prove some helper results:

Lemma 9.4 (Quotient modules)
Let L be a Lie algebra and V an L-module with a submodule 0 < W < V. Then the quotient space
V/W ={v+ W |ve V}isan L module with the induced action

w+W)x:=vx+W.

21



22 CHAPTER 4. ENGEL’S AND LIE’S THEOREMS

Proof. Details omitted, but routine verification. Check well-definedness first, the module actions
are directly inherited from V. n

Lemma 9.5 (ad-quotients)

Let L be a Lie algebra and H a subalgebra. Then we can restrict ad : L — Lie(End(L)) to H
and thus get a representation ad|y : H — Lie(End(L)). This makes L into an H-module and H
itself is an H-submodule of L. Thus the quotient space L/H is an H-module as well. If y € H is
ad-nilpotent, then it acts as a nilpotent endomorphism on L/H as well.

Proof. Itis clear that ad|y is a Lie algebra homomorphism and thus that L is an H-module. Since
H is a subalgebra (i.e. [H, H] < H), it follows that H is an H-submodule of L. By Lemma 9.4,
the quotient space L/H (which is not a Lie algebra!) is an H-module as well with action (x +
H)h := xh® + H = [x,h]+ H forallx € Landall h € H. If (h*)k = 0 for some k, then
(x + H)(h*Y* = x(h*)* + H =0+ H forall x € L. [ |

Lemma 9.6 (ad-nilpotency)

Let L be a Lie subalgebra of gl(V) for some finite-dimensional vector space V over [F and suppose
that L consists of nilpotent endomorphisms of V. Then for all x € L the endomorphism x* ¢
End(L) is nilpotent.

Proof. Ifk e N such that x*¥ = 0, then

2k

[' ° [[)” -x]’ -x]’ .. ']7 )C] = ZcixinZk_i

i=0

2k times

for some numbers ¢; € F. Since for every summand in this sum there are at least k factors of x on
at least one side of y, the whole sum is equal to 0. As this holds for all y € L, we have proved that
(xad)Zk =0. [}

Proposition 9.7 (Helper for Engel)
Let V be a finite-dimensional vector space over [F and L a Lie subalgebra of gl(V) consisting of
nilpotent endomorphisms. Then there is a non-zero v € V with vx =0 forall x € L.

Proof. We proceed by induction on dim(L). If dim(L) = 1, then L consists of the scalar multiples
of a single nilpotent endomorphism x € End(V). By Proposition 9.2 it has 0 as eigenvalue, thus
there is an eigenvector 0 # v € V with vx = 0 and we are done.

Now suppose dim(L) > 1 and the proposition is already proved for nilpotent Lie algebras of smaller
dimension. We proceed in two steps:

Step 1: Let H be a maximal subalgebra of L (that is, H is a subalgebra such that there is no
subalgebra K of L with H < K < L). Such an H exists and is non-zero, since every 1-dimensional
subspace of L is a subalgebra and dim(L) < oco. We claim that dim(H) = dim(L) — 1 and that H
is an ideal in L.

As in Lemma 9.5 we view L as H-module with submodule H and thus L/H as H-module with
the action (x + H)h := xh™ + H. This gives us a representation of H on the vector space L/H
and thus a homomorphism of Lie algebras ¢ : H — Lie(End(L/H)). Since L and thus H consists
of nilpotent elements we conclude that H¢ consists of nilpotent endomorphisms of L/H using
Lemma 9.6. Since dim(H¢) < dim(H) < dim(L), we can use the induction hypothesis to conclude
that thereisay € L\ H suchthat (y+ H)h =0+ H forallh € H, thatis, [y, H] < Hbuty ¢ H.
But then H 4 Span(y) is a subalgebra of L that properly contains H. By the maximality of H it
follows that H + Span(y) = L and so dim(H) = dim(L) — 1 and H is an ideal in L.

Step 2: Now we apply the induction hypothesis to H < L < gl(V). We conclude that there is
aw € V withwh =0forallh € H. Thus W := {v € V | vh = 0 Vh € H} is a non-zero
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subspace of V. It is certainly invariant under H (mapped to O by it!) and invariant under y, since
vyh = v[y,h] +vhy =0forallv € W and all h € H, since [y, h] € H. Since y is nilpotent on
V and thus on W, it has an eigenvector 0 # v € W with eigenvalue O (see Proposition 9.2), that is,
vy = 0. However, since vh = 0 forall » € H and L = H + Span(y), it follows that vx = 0 for all
x € L. |

Now we prove a theorem, from which Engel’s Theorem 9.3 follows immediately:

Theorem 9.8 (Engel’s Theorem in gl(V))

Let K be a Lie subalgebra of gl(V) for some finite-dimensional vector space V over a field F, such
that every element x of K is a nilpotent endomorphism. Then there is a basis 8 of V such that
every element x of K corresponds to a strictly lower triangular matrix with respect to 8. It follows
that K is a nilpotent Lie algebra.

Proof. We proceed by induction on dim(V). If dim(V) = 1 then the dimension of K is either O
or 1 and in both cases the matrices with respect to any basis 8 are all zero because they are nilpotent
1 x 1-matrices.

Suppose now that n := dim(V) > 2 and the statement is proved for all cases with smaller dimen-
sion. By Proposition 9.7 there is a vector 0 #= vy € V with vox = 0 for all x € K. Obviously,
W := Span(v) is a K-submodule of V and thus by Proposition 9.4, the quotient space V/W is a
K-module. We denote the Lie subalgebra of gl(V/W) induced by this action of K by K. Since
dim(V/W) =dim(V) —1=n—1 and K consists of nilpotent endomorphisms, we can use the in-
duction hypothesis to conclude that V/W has a basis 8 = (v; + W, ..., v,_; + W) such that every
element of K corresponds to a strictly lower triangular matrix with respect to B. But then every ele-
ment of K corresponds to a strictly lower triangular matrix with respect to 8 := (vg, V1, ..., Uys_1).
This implies that K is isomorphic to a subalgebra of the Lie algebra of all strictly lower triangular
matrices, which was shown to be nilpotent in Example 5.4. Thus K itself is nilpotent as well. W

We can now prove the missing implication in Engel’s Theorem 9.3.

Proof. Suppose that L is a finite-dimensional Lie algebra over a field [F such that every element
of L is ad-nilpotent. Then K := L is a Lie subalgebra of Lie(End(L)) fulfilling the hypotheses
of Theorem 9.8 and is thus nilpotent. Since ad is a homomorphism of Lie algebras with kernel
Z(L) and image K, we have shown that L/Z(L) = K is nilpotent, using the First Isomorphism
Theorem 4.16. Therefore by Theorem 5.7 the Lie algebra L itself is nilpotent. |

Remark 9.9 (A warning)

Not for every nilpotent Lie algebra contained in gl(V') there is a basis of V such that all elements
correspond to strictly lower triangular matrices. For example L := Span(idy) is abelian and thus
nilpotent but it contains the identity, which corresponds to the identity matrix with respect to every
basis of V.

10 Lie’s Theorem on soluble Lie algebras

We want to derive a similar result to Theorem 9.8 for soluble Lie algebras over C.

Definition 10.1 (Dual space and weights)

Let L be any [F-vector space. Then we denote the set of [F-linear maps from L to IF by L* and call it
the dual space of L.

Let L be a Lie algebra over IF and V a finite-dimensional L-module. A weight of L (on V) is an
element A € L* such that

Vii={veV |vx=(xA)-vforallx € L}
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is not equal to {0}. The subspace V; for a weight X is called a weight space. It consists of simulta-
neous eigenvectors of all elements of L and the zero vector.

The following lemma is crucial for what we want to do:

Lemma 10.2 (Invariance)
Let L be a Lie algebra over a field IF of characteristic 0, V a finite-dimensional L-module and K an
ideal in L. Assume that A is a weight of K on V, that is, the weight space

Vi:={veV]|vk=(kAvforallk € K}

is non-zero. Then V, is invariant under the action of L.

Proof. Let0# v eV, andx € L. Then
vxk = v[x, k] + vkx = ([x, k]A) - v + (kL) - vx.

Note, that [x, k] € K since K is an ideal of L. That is, if we could show that [x, k]A = O for all
k € K and all x € L, we would be done.
To this end, we consider the sequence of vectors

v, vX, vXZ, ...

and let m be the least integer, such that (v, vx, ..., vx™) is linearly dependent. We claim that
U := Span(v, vx, ..., vx™~1) is invariant under K and that the matrix M; of the action of any
k € K with respect to the basis B8 := (v, vx, ..., vx""!) is a lower triangular matrix with all
diagonal entries being kA:

Indeed, vk = (kA)v showing that the first row of My is (kA, O, ..., 0). We then proceed by induction
on the rows showing that vx’k = (kA)vx’ 4+ w for some w € Span(v, vx,...,vx' ") forl <i <m
using

vx Tk = vxl[x, k] + vx'kx = (M)ox +u

for some u# € Span(v, vx, ..., vx’) because [x, k] € K and the induction hypothesis.

We have showed that U is invariant under K and under x, so it is invariant under the whole Lie
subalgebra K 4 Span(x) of L. For every element k € K, the commutator [x, k] is contained in K,
so the matrix M, s of its action on U with respect to the basis 8B is lower triangular with [x, k]
on the diagonal. On the other hand, this matrix is the commutator of the matrices M, and My, so in
particular its trace is zero. Thus [x, k]A = 0 and we have proved the Invariance Lemma.

Note that we have proved at the same time that U < V. |

We prove a Proposition analogous to Proposition 9.7:

Proposition 10.3 (Helper for Lie)
Let L be a soluble Lie subalgebra of gl(V) for some finite-dimensional C-vector space V. Then L
has a weight A on V and thus a non-zero weight space.
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Proof. We need to find a simultaneous eigenvector for all elements of L. We proceed by induction
on dim(L) very similarly to the proof of Proposition 9.7. If dim(L) = 1, then L consists of the scalar
multiples of a single non-zero element x. This element has an eigenvalue © with corresponding
eigenvector v by Proposition 6.11 because V isover C. Thus A : L — C,c-x+> c-uforc € Cis
a weight with weight space V, containing at least Span(v).

Now suppose n := dim(L) > 2 and the statement is already proved for all Lie algebras of dimension
less than n. Since L is soluble, the space L") = [L, L] is a proper ideal of L. Let K be an (n — 1)-
dimensional subspace of L containing [L, L] and x € L \ K, such that we have L = K 4 Span(x).
The subspace K is an ideal of L since every commutator in L is contained in [L, L] and thus in K.
Therefore K is in particular a subalgebra of smaller dimension than L and thus by Theorem 5.7 itself
soluble. Using the induction hypothesis we conclude that K has a weight & € K*. Let W := V; be
the corresponding weight space.

Using the Invariance Lemma 10.2 we conclude that W is invariant under x and thus under all of L.
Since we are working over the complex numbers C, the endomorphism induced by x on W has an
eigenvector w with eigenvalue w, that is, wx = u - w. But if we now define A : L — C setting

k+v-x)A ::ki—{—vu
this defines a C-linear map and thus an element A € L*, such that
whk4+v-x)=wk+v- -wx =GkNw+vpw=Gk+v-xX)r-w

for all k € K and all v € C showing that X is a weight of L such that the weight space V, contains
w. |

Theorem 10.4 (Lie)

Let L be a soluble Lie algebra over C and V is a finite-dimensional L-module. Then there is a basis
B of V, such that the matrix the action of every element of L with respect to &8 is a lower triangular
matrix.

Proof. We proceed by induction on dim(V). If dim(V) = 1 then the dimension the matrices with
respect to any basis 8 are lower triangular because they are 1 x 1-matrices.

Suppose now that n := dim(V) > 2 and the statement is proved for all cases with smaller di-
mension. Being a module, V gives rise to a Lie algebra homomorphism ¢ : L — gl(V) and
the image L¢ is soluble using Theorem 5.7 and the First Isomorphism Theorem 4.16. By Propo-
sition 10.3 applied to L¢ there is weight A’ of Ly on V. However, this immediately gives rise
to a weight A := @)’ of L. In particular, we have a non-zero vector vy in the weight space V.
That is, vox = (xA)vg for all x € L. Obviously, W := Span(vy) is an L-submodule of V and
thus by Proposition 9.4, the quotient space V/W is an L-module of smaller dimension. Since
dim(V/W) =dim(V) — 1 = n — 1 we can use the induction hypothesis to conclude that V /W has
abasis 8 = (v;+ W, ..., v,_1 + W) such that every element of L corresponds to a lower triangular
matrix with respect to 8. But then every element of L corresponds to a lower triangular matrix with
respect to the basis B := (vg, vy, ..., Vy—1) of V. |



