
Chapter 4

Engel’s and Lie’s Theorems

9 Engel’s Theorem on nilpotent Lie algebras
Definition 9.1 (Nilpotent elements)
Let V be a vector space and T ∈ End(V ) an endomorphism. Then T is called nilpotent, if there is
a k ∈ N such that T k

= 0 (the zero map).
Let L be a Lie algebra and x ∈ L . Then x is called ad-nilpotent, if xad

∈ End(L) is nilpotent.
Note that this means that (xad)k = 0 for some k ∈ N and this uses the regular composition of maps
rather than the Lie product!

Proposition 9.2 (Eigenvalues of nilpotent elements)
Let V be a finite-dimensional vector space over F and T ∈ End(V ) be nilpotent. Then 0 is the only
eigenvalue of T .

Proof. Let λ be an eigenvalue with eigenvector 0 6= v ∈ V and let k ∈ N with T k
= 0. Then

0 = vT k
= λkv so λk

= 0 and thus λ = 0 since F is a field. However, 0 is an eigenvalue since T is
not invertible. �

In this section we want to prove the following theorem:

Theorem 9.3 (Engel)
Let L be a finite-dimensional Lie algebra over a field F. Then L is nilpotent if and only if every
element x of L is ad-nilpotent.

We only prove the “only-if”-part here, the “if”-part is proved in the rest of this section.

Proof. If L is nilpotent, then there is a k such that Lk
= 0. This means in particular that every

expression
[[· · · [[x0, x1], x2], · · · ], xk] = 0

for arbitrary elements x0, x1, . . . , xk ∈ L . This implies immediately that

xad
1 · x

ad
2 · · · · · x

ad
k = 0 ∈ End(L)

and in particular that (xad)k = 0 for all x ∈ L . So every element x of L is ad-nilpotent. �

We first prove some helper results:

Lemma 9.4 (Quotient modules)
Let L be a Lie algebra and V an L-module with a submodule 0 < W < V . Then the quotient space
V/W = {v +W | v ∈ V } is an L module with the induced action

(v +W )x := vx +W.
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Proof. Details omitted, but routine verification. Check well-definedness first, the module actions
are directly inherited from V . �

Lemma 9.5 (ad-quotients)
Let L be a Lie algebra and H a subalgebra. Then we can restrict ad : L → Lie(End(L)) to H
and thus get a representation ad|H : H → Lie(End(L)). This makes L into an H -module and H
itself is an H -submodule of L . Thus the quotient space L/H is an H -module as well. If y ∈ H is
ad-nilpotent, then it acts as a nilpotent endomorphism on L/H as well.

Proof. It is clear that ad|H is a Lie algebra homomorphism and thus that L is an H -module. Since
H is a subalgebra (i.e. [H, H ] ≤ H ), it follows that H is an H -submodule of L . By Lemma 9.4,
the quotient space L/H (which is not a Lie algebra!) is an H -module as well with action (x +
H)h := xhad

+ H = [x, h] + H for all x ∈ L and all h ∈ H . If (had)k = 0 for some k, then
(x + H)(had)k = x(had)k + H = 0+ H for all x ∈ L . �

Lemma 9.6 (ad-nilpotency)
Let L be a Lie subalgebra of gl(V ) for some finite-dimensional vector space V over F and suppose
that L consists of nilpotent endomorphisms of V . Then for all x ∈ L the endomorphism xad

∈

End(L) is nilpotent.

Proof. If k ∈ N such that xk
= 0, then

[· · · [[y, x], x], . . .], x]︸ ︷︷ ︸
2k times

=

2k∑
i=0

ci x i yx2k−i

for some numbers ci ∈ F. Since for every summand in this sum there are at least k factors of x on
at least one side of y, the whole sum is equal to 0. As this holds for all y ∈ L , we have proved that
(xad)2k

= 0. �

Proposition 9.7 (Helper for Engel)
Let V be a finite-dimensional vector space over F and L a Lie subalgebra of gl(V ) consisting of
nilpotent endomorphisms. Then there is a non-zero v ∈ V with vx = 0 for all x ∈ L .

Proof. We proceed by induction on dim(L). If dim(L) = 1, then L consists of the scalar multiples
of a single nilpotent endomorphism x ∈ End(V ). By Proposition 9.2 it has 0 as eigenvalue, thus
there is an eigenvector 0 6= v ∈ V with vx = 0 and we are done.
Now suppose dim(L) > 1 and the proposition is already proved for nilpotent Lie algebras of smaller
dimension. We proceed in two steps:
Step 1: Let H be a maximal subalgebra of L (that is, H is a subalgebra such that there is no
subalgebra K of L with H < K < L). Such an H exists and is non-zero, since every 1-dimensional
subspace of L is a subalgebra and dim(L) <∞. We claim that dim(H) = dim(L)− 1 and that H
is an ideal in L .
As in Lemma 9.5 we view L as H -module with submodule H and thus L/H as H -module with
the action (x + H)h := xhad

+ H . This gives us a representation of H on the vector space L/H
and thus a homomorphism of Lie algebras ϕ : H → Lie(End(L/H)). Since L and thus H consists
of nilpotent elements we conclude that Hϕ consists of nilpotent endomorphisms of L/H using
Lemma 9.6. Since dim(Hϕ) ≤ dim(H) < dim(L), we can use the induction hypothesis to conclude
that there is a y ∈ L \H such that (y+H)h = 0+H for all h ∈ H , that is, [y, H ] ≤ H but y /∈ H .
But then H + Span(y) is a subalgebra of L that properly contains H . By the maximality of H it
follows that H + Span(y) = L and so dim(H) = dim(L)− 1 and H is an ideal in L .
Step 2: Now we apply the induction hypothesis to H ≤ L ≤ gl(V ). We conclude that there is
a w ∈ V with wh = 0 for all h ∈ H . Thus W := {v ∈ V | vh = 0 ∀h ∈ H} is a non-zero
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subspace of V . It is certainly invariant under H (mapped to 0 by it!) and invariant under y, since
vyh = v[y, h] + vhy = 0 for all v ∈ W and all h ∈ H , since [y, h] ∈ H . Since y is nilpotent on
V and thus on W , it has an eigenvector 0 6= v ∈ W with eigenvalue 0 (see Proposition 9.2), that is,
vy = 0. However, since vh = 0 for all h ∈ H and L = H + Span(y), it follows that vx = 0 for all
x ∈ L . �

Now we prove a theorem, from which Engel’s Theorem 9.3 follows immediately:

Theorem 9.8 (Engel’s Theorem in gl(V ))
Let K be a Lie subalgebra of gl(V ) for some finite-dimensional vector space V over a field F, such
that every element x of K is a nilpotent endomorphism. Then there is a basis B of V such that
every element x of K corresponds to a strictly lower triangular matrix with respect to B. It follows
that K is a nilpotent Lie algebra.

Proof. We proceed by induction on dim(V ). If dim(V ) = 1 then the dimension of K is either 0
or 1 and in both cases the matrices with respect to any basis B are all zero because they are nilpotent
1× 1-matrices.
Suppose now that n := dim(V ) ≥ 2 and the statement is proved for all cases with smaller dimen-
sion. By Proposition 9.7 there is a vector 0 6= v0 ∈ V with v0x = 0 for all x ∈ K . Obviously,
W := Span(v0) is a K -submodule of V and thus by Proposition 9.4, the quotient space V/W is a
K -module. We denote the Lie subalgebra of gl(V/W ) induced by this action of K by K̄ . Since
dim(V/W ) = dim(V )− 1 = n − 1 and K̄ consists of nilpotent endomorphisms, we can use the in-
duction hypothesis to conclude that V/W has a basis B̄ = (v1+W, . . . , vn−1+W ) such that every
element of K̄ corresponds to a strictly lower triangular matrix with respect to B̄. But then every ele-
ment of K corresponds to a strictly lower triangular matrix with respect to B := (v0, v1, . . . , vn−1).
This implies that K is isomorphic to a subalgebra of the Lie algebra of all strictly lower triangular
matrices, which was shown to be nilpotent in Example 5.4. Thus K itself is nilpotent as well. �

We can now prove the missing implication in Engel’s Theorem 9.3.

Proof. Suppose that L is a finite-dimensional Lie algebra over a field F such that every element
of L is ad-nilpotent. Then K := Lad is a Lie subalgebra of Lie(End(L)) fulfilling the hypotheses
of Theorem 9.8 and is thus nilpotent. Since ad is a homomorphism of Lie algebras with kernel
Z(L) and image K , we have shown that L/Z(L) ∼= K is nilpotent, using the First Isomorphism
Theorem 4.16. Therefore by Theorem 5.7 the Lie algebra L itself is nilpotent. �

Remark 9.9 (A warning)
Not for every nilpotent Lie algebra contained in gl(V ) there is a basis of V such that all elements
correspond to strictly lower triangular matrices. For example L := Span(idV ) is abelian and thus
nilpotent but it contains the identity, which corresponds to the identity matrix with respect to every
basis of V .

10 Lie’s Theorem on soluble Lie algebras

We want to derive a similar result to Theorem 9.8 for soluble Lie algebras over C.

Definition 10.1 (Dual space and weights)
Let L be any F-vector space. Then we denote the set of F-linear maps from L to F by L∗ and call it
the dual space of L .
Let L be a Lie algebra over F and V a finite-dimensional L-module. A weight of L (on V ) is an
element λ ∈ L∗ such that

Vλ := {v ∈ V | vx = (xλ) · v for all x ∈ L}
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is not equal to {0}. The subspace Vλ for a weight λ is called a weight space. It consists of simulta-
neous eigenvectors of all elements of L and the zero vector.

The following lemma is crucial for what we want to do:

Lemma 10.2 (Invariance)
Let L be a Lie algebra over a field F of characteristic 0, V a finite-dimensional L-module and K an
ideal in L . Assume that λ is a weight of K on V , that is, the weight space

Vλ := {v ∈ V | vk = (kλ)v for all k ∈ K }

is non-zero. Then Vλ is invariant under the action of L .

Proof. Let 0 6= v ∈ Vλ and x ∈ L . Then

vxk = v[x, k] + vkx = ([x, k]λ) · v + (kλ) · vx .

Note, that [x, k] ∈ K since K is an ideal of L . That is, if we could show that [x, k]λ = 0 for all
k ∈ K and all x ∈ L , we would be done.
To this end, we consider the sequence of vectors

v, vx, vx2, . . .

and let m be the least integer, such that (v, vx, . . . , vxm) is linearly dependent. We claim that
U := Span(v, vx, . . . , vxm−1) is invariant under K and that the matrix Mk of the action of any
k ∈ K with respect to the basis B := (v, vx, . . . , vxm−1) is a lower triangular matrix with all
diagonal entries being kλ:

Mk =


kλ 0 · · · 0

∗ kλ
. . .

...
...

. . .
. . . 0

∗ · · · ∗ kλ

 .
Indeed, vk = (kλ)v showing that the first row of Mk is (kλ, 0, . . . , 0). We then proceed by induction
on the rows showing that vx i k = (kλ)vx i

+w for some w ∈ Span(v, vx, . . . , vx i−1) for 1 ≤ i < m
using

vx i+1k = vx i
[x, k] + vx i kx = (kλ)vx i+1

+ u

for some u ∈ Span(v, vx, . . . , vx i ) because [x, k] ∈ K and the induction hypothesis.
We have showed that U is invariant under K and under x , so it is invariant under the whole Lie
subalgebra K + Span(x) of L . For every element k ∈ K , the commutator [x, k] is contained in K ,
so the matrix M[x,k] of its action on U with respect to the basis B is lower triangular with [x, k]λ
on the diagonal. On the other hand, this matrix is the commutator of the matrices Mx and Mk , so in
particular its trace is zero. Thus [x, k]λ = 0 and we have proved the Invariance Lemma.
Note that we have proved at the same time that U ≤ Vλ. �

We prove a Proposition analogous to Proposition 9.7:

Proposition 10.3 (Helper for Lie)
Let L be a soluble Lie subalgebra of gl(V ) for some finite-dimensional C-vector space V . Then L
has a weight λ on V and thus a non-zero weight space.
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Proof. We need to find a simultaneous eigenvector for all elements of L . We proceed by induction
on dim(L) very similarly to the proof of Proposition 9.7. If dim(L) = 1, then L consists of the scalar
multiples of a single non-zero element x . This element has an eigenvalue µ with corresponding
eigenvector v by Proposition 6.11 because V is over C. Thus λ : L → C, c · x 7→ c ·µ for c ∈ C is
a weight with weight space Vλ containing at least Span(v).
Now suppose n := dim(L) ≥ 2 and the statement is already proved for all Lie algebras of dimension
less than n. Since L is soluble, the space L (1) = [L , L] is a proper ideal of L . Let K be an (n − 1)-
dimensional subspace of L containing [L , L] and x ∈ L \ K , such that we have L = K + Span(x).
The subspace K is an ideal of L since every commutator in L is contained in [L , L] and thus in K .
Therefore K is in particular a subalgebra of smaller dimension than L and thus by Theorem 5.7 itself
soluble. Using the induction hypothesis we conclude that K has a weight λ̃ ∈ K ∗. Let W := Vλ̃ be
the corresponding weight space.
Using the Invariance Lemma 10.2 we conclude that W is invariant under x and thus under all of L .
Since we are working over the complex numbers C, the endomorphism induced by x on W has an
eigenvector w with eigenvalue µ, that is, wx = µ · w. But if we now define λ : L → C setting

(k + ν · x)λ := kλ̃+ νµ

this defines a C-linear map and thus an element λ ∈ L∗, such that

w(k + ν · x) = wk + ν · wx = (kλ̃)w + νµw = (k + ν · x)λ · w

for all k ∈ K and all ν ∈ C showing that λ is a weight of L such that the weight space Vλ contains
w. �

Theorem 10.4 (Lie)
Let L be a soluble Lie algebra over C and V is a finite-dimensional L-module. Then there is a basis
B of V , such that the matrix the action of every element of L with respect to B is a lower triangular
matrix.

Proof. We proceed by induction on dim(V ). If dim(V ) = 1 then the dimension the matrices with
respect to any basis B are lower triangular because they are 1× 1-matrices.
Suppose now that n := dim(V ) ≥ 2 and the statement is proved for all cases with smaller di-
mension. Being a module, V gives rise to a Lie algebra homomorphism ϕ : L → gl(V ) and
the image Lϕ is soluble using Theorem 5.7 and the First Isomorphism Theorem 4.16. By Propo-
sition 10.3 applied to Lϕ there is weight λ′ of Lϕ on V . However, this immediately gives rise
to a weight λ := ϕλ′ of L . In particular, we have a non-zero vector v0 in the weight space Vλ.
That is, v0x = (xλ)v0 for all x ∈ L . Obviously, W := Span(v0) is an L-submodule of V and
thus by Proposition 9.4, the quotient space V/W is an L-module of smaller dimension. Since
dim(V/W ) = dim(V )− 1 = n − 1 we can use the induction hypothesis to conclude that V/W has
a basis B̄ = (v1+W, . . . , vn−1+W ) such that every element of L corresponds to a lower triangular
matrix with respect to B̄. But then every element of L corresponds to a lower triangular matrix with
respect to the basis B := (v0, v1, . . . , vn−1) of V . �


