
Chapter 5

Jordan decomposition and Killing form

11 Jordan decomposition

We recall some definitions and results from linear algebra:

Definition/Proposition 11.1 (Jordan normal form)
Let V be an n-dimensional vector space over C and T ∈ End(V ). Then V has a basis B such that
the matrix corresponding to T with respect to B is of the block matrix form

J1 0 · · · 0

0 J2
. . .

...
...

. . .
. . . 0

0 · · · 0 Jk


and each Ji is of the form 

λi 0 · · · · · · 0

1 λi
. . . 0

...

0 1 λi
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 λi


,

for some λi ∈ C. The Ji are called Jordan blocks, we say that such a matrix is in Jordan normal
form. The number of Jordan blocks with a given diagonal entry λ and a given size is equal for
all choices of such a basis B. An endomorphism T is called diagonalisable, if all Jordan blocks
in its Jordan normal form have size (1 × 1), that is, the Jordan normal form is a diagonal matrix.
Obviously, T is nilpotent if and only if all diagonal entries in all Jordan blocks are equal to 0.

From this result we immediately get:

Definition/Proposition 11.2 (Jordan decomposition)
Let T ∈ End(V ) for a finite-dimensional C-vector space V . The Jordan decomposition of T is an
expression of T as T = D + N with D, N ∈ End(V ), such that D is diagonalisable, N is nilpotent
and DN = N D. Both endomorphisms D and N are uniquely defined by these conditions. There is
a polynomial p ∈ C[X ] with D = p(T ).

Proof. We only give a rough idea here:
Choose a basis B of V such that the matrix of T with respect to B is in Jordan normal form. The
matrix of D with respect to B is the diagonal matrix containing only the diagonal entries of the
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Jordan blocks, such that N := T − D is nilpotent. The endomorphisms D and N commute since
for every Jordan block the two matrices

λi 0 · · · · · · 0

0 λi
. . . 0

...

0 0 λi
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 0 λi


and



0 0 · · · · · · 0

1 0
. . . 0

...

0 1 0
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 0


commute. One proves next the existence of the polynomial p, which we skip here.
We need to prove the uniqueness. Let T = D + N = D̃ + Ñ be two Jordan decompositions of T .
Since D and D̃ are polynomials in T , they commute with each other and thus can be diagonalised
simultaneously. But then since D + N = D̃ + Ñ we get D − D̃ = Ñ − N is nilpotent which can
only be if D = D̃. �

Proposition 11.3 (Solubility implies zero traces)
Let L be a soluble subalgebra of gl(V ) where V is a finite-dimensional C-vector space. Then for all
x ∈ L and all y ∈ [L , L] we have Tr(xy) = 0.

Proof. We use Lie’s Theorem 10.4: There is a basis B of V such that the every element x ∈ L
corresponds to a lower triangular matrix with respect to B. Since y ∈ [L , L] is a sum of commuta-
tors, the diagonal entries of its matrix with respect to B are all zero. But then all diagonal entries of
the matrix of xy are zero and thus the trace of xy is zero. �

For the other direction, we need a slightly stronger hypothesis:

Proposition 11.4 (Zero traces imply solubility)
Let V be a finite-dimensional C-vector space and L a Lie subalgebra of gl(V ). Suppose that
Tr(xy) = 0 for all x, y ∈ L . Then L is soluble.

Proof. Not extremely difficult, but left out of these notes for the sake of brevity. �

Surprisingly, these two can be put together for this result:

Theorem 11.5 (Criterion for solubility)
Let L be a finite-dimensional Lie algebra over C. Then L is soluble if and only if Tr(xad yad) = 0
for all x ∈ L and y ∈ [L , L].

Proof. Assume that L is soluble. Then Lad is a soluble subalgebra of gl(L) by Theorem 5.7
and because ad is a homomorphism of Lie algebras. The statement of the theorem now follows
immediately from Proposition 11.3 since [u, v]ad

= [uad, vad
] by the Jacobi identity.

Assume conversely that Tr(xad yad) = 0 for all x ∈ L and all y ∈ [L , L]. Then Proposition 11.4
implies that [L , L]ad

= [Lad, Lad
] is soluble (using our hypothesis only for x, y ∈ [L , L]. Thus

Lad itself is soluble since [Lad, Lad
] = (Lad)(1). But since Lad ∼= L/Z(L) it follows using Theo-

rem 5.7.(ii) that L itself is soluble as Z(L) is abelian. �

12 The Killing form
Definition/Proposition 12.1 (The Killing form)
Let L be a Lie algebra over a field F. Then the mapping

κ : L × L → F
(x, y) 7→ Tr(xad yad)
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is bilinear, that is, κ(x + λx̃, y) = κ(x, y)+ λκ(x̃, y) and κ(x, y + λỹ) = κ(x, y)+ λκ(x, ỹ) for
all x, x̃, y, ỹ ∈ L and all λ ∈ F. The map κ is called the Killing form. It is symmetric, that is,

κ(x, y) = κ(y, x) for all x, y ∈ L .

The Killing form is associative, that is,

κ([x, y], z) = κ(x, [y, z]) for all x, y, z ∈ L .

The latter property comes from the fact that Tr((uv − vu)w) = Tr(u(vw − wv)) for all endomor-
phisms u, v, w ∈ End(V ) for any vector space V .

We can now restate Theorem 11.5 using this language:

Theorem 12.2 (Cartan’s First Criterion)
Let L be a finite-dimensional Lie algebra over C. Then L is soluble if and only if κ(x, y) = 0 for
all x ∈ L and y ∈ [L , L].

The Killing form can not only ”‘detect solubility”’, but also semisimplicity. We need a few more
definitions.

Definition 12.3 (Perpendicular space, non-degeneracy)
Let V be a vector space over a field F and τ : V × V → F a symmetric bilinear form. For any
subspace W ≤ V we define

W⊥ := {v ∈ V | τ(v,w) = 0 for all w ∈ W }

and call it the perpendicular space of W . It is a subspace of V . We call τ non-degenerate, if
V⊥ = {0}, that is, there is no 0 6= u ∈ V with τ(u, v) = 0 for all v ∈ V . Otherwise, we call τ
degenerate. If τ is non-degenerate, then

dimF(V ) = dimF(W )+ dimF(W⊥)

for all subspaces W ≤ V .

Lemma 12.4 (Perpendicular space of ideals with respect to the Killing form)
Let L be a Lie algebra, K be an ideal of L and κ the Killing form of L . Then K⊥ (with respect to κ)
is an ideal of L as well.

Proof. This uses the associativity of the Killing form: Let x ∈ K⊥, that is, κ(x, z) = 0 for all
z ∈ K . We have κ([x, y], z) = κ(x, [y, z]) = 0 for all y ∈ L and all z ∈ K because [y, z] ∈ K . �

Theorem 12.5 (Cartan’s Second Criterion)
Let L be a finite-dimensional Lie algebra over C. Then L is semisimple if and only if κ is non-
degenerate.

Proof. Suppose that L is semisimple. By Lemma 12.4, the space L⊥ (with respect to κ) is an ideal
of L , such that κ(x, y) = 0 for all x ∈ L⊥ and all y ∈ [L⊥, L⊥] (indeed, even for all y ∈ L). Thus,
by Theorem 12.2, the ideal L⊥ is soluble. However, because we assumed that L is semisimple, it
has no soluble ideals except {0} and thus L⊥ = 0 and thus κ is non-degenerate.
Suppose that L is not semisimple. By Exercise 6 on Tutorial Sheet 2 it then has a non-zero abelian
ideal A. Let a ∈ A be a non-zero element. For every x ∈ L , the map aadxadaad sends all of L
to 0, since [[z, a], x] ∈ A and thus [[[z, a], x], a] = 0 for every z ∈ L . Thus (aadxad)2 = 0 and
therefore aadxad is a nilpotent endomorphism. However, nilpotent endomorphisms have trace 0, so
a is a non-zero element of L⊥ and κ is shown to be degenerate. �



13. ABSTRACT JORDAN DECOMPOSITION 29

Lemma 12.6 (Killing form on ideal)
Let I be an ideal in a finite-dimensional Lie algebra over C. Then I is in particular a subalgebra
and thus a Lie algebra on its own. The Killing form of I is then the restriction of the Killing from
of L to I :

κI (x, y) = κ(x, y) for all x, y ∈ I.

Proof. Choose a basis of I and extend it to a basis of L . Then write matrices of xad for elements
x ∈ I with respect to this basis. The result follows. �

Lemma 12.7 (Ideals in semisimple Lie algebras)
Let I be a non-trivial proper ideal in a complex semisimple Lie algebra L , then L = I ⊕ I⊥. The
ideal I is a semisimple Lie algebra in its own right.

Proof. Let κ denote the Killing form on L , it is non-degenerate by Cartan’s Second Criterion 12.5
since L is semisimple. The restriction of κ to I ∩ I⊥ is identically 0, so by Cartan’s First Crite-
rion 12.2 we get I ∩ I⊥ = 0 because L does not have a non-zero soluble ideal. Counting dimensions
now gives L = I ⊕ I⊥.
We need to show that I is a semisimple Lie algebra. Suppose not, then its Killing form is degenerate
(using Cartan’s Second Criterion 12.5). Thus, there is an 0 6= a ∈ I such that κI (a, x) = 0 for all
x ∈ I , where κI is the Killing form of I . By Lemma 12.6 this means that κ(a, x) = 0 for all x ∈ I .
But then a ∈ L⊥ since L = I ⊕ I⊥ contradicting that L is semisimple. �

Using Lemma 12.7 it is now relatively easy to prove Theorem 5.12:

Theorem 12.8 (Characterisation of semisimple Lie algebras)
A finite-dimensional Lie algebra L over C is semisimple if and only if it is the finite direct sum of
minimal ideals which are simple Lie algebras.

Proof. We only give the idea for the “only if” part: Use induction by the dimension, for the
induction step choose a minimal non-zero ideal I and use Lemma 12.7 to write L = I ⊕ I⊥ and to
show that I⊥ is again semisimple of lower dimension. The ideal I is a simple Lie algebra because
it was chosen minimal. �

13 Abstract Jordan decomposition

Can we have a Jordan decomposition in an abstract Lie algebra?
If L is a one-dimensional Lie algebra, then every linear map ϕ : L → gl(V ) is a representation.
So in general, an element x ∈ L can be mapped to an arbitrary endomorphism of V . However, for
complex semisimple Lie algebras, we can do better:

Theorem 13.1 (Abstract Jordan decomposition)
Let L be a finite-dimensional semisimple Lie algebra. Each x ∈ L can be written uniquely as
x = d + n, where d, n ∈ L are such that dad is diagonalisable, nad is nilpotent, and [d, n] = 0.
Furthermore, if [x, y] = 0 for some y ∈ L , then [d, y] = 0 = [n, y].
The decomposition x = d + n as above is called abstract Jordan decomposition of x .

Proof. Omitted. �

This in fact covers all representations of L:

Theorem 13.2 (Jordan decompositions)
Let L be a finite-dimensional semisimple Lie algebra over C and let ϕ : L → gl(V ) by any repre-
sentation. Let x = d+n be the abstract Jordan decomposition of x . Then the Jordan decomposition
of xϕ ∈ gl(V ) is xϕ = dϕ + nϕ.

Proof. Omitted. �


