Chapter 5

Jordan decomposition and Killing form

11 Jordan decomposition

We recall some definitions and results from linear algebra:

Definition/Proposition 11.1 (Jordan normal form)

Let V be an n-dimensional vector space over \mathbb{C} and $T \in \operatorname{End}(V)$. Then V has a basis \mathscr{B} such that the matrix corresponding to T with respect to \mathscr{B} is of the block matrix form

$$
\left[\begin{array}{cccc}
J_{1} & 0 & \cdots & 0 \\
0 & J_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & J_{k}
\end{array}\right]
$$

and each J_{i} is of the form

$$
\left[\begin{array}{ccccc}
\lambda_{i} & 0 & \cdots & \cdots & 0 \\
1 & \lambda_{i} & \ddots & 0 & \vdots \\
0 & 1 & \lambda_{i} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1 & \lambda_{i}
\end{array}\right]
$$

for some $\lambda_{i} \in \mathbb{C}$. The J_{i} are called Jordan blocks, we say that such a matrix is in Jordan normal form. The number of Jordan blocks with a given diagonal entry λ and a given size is equal for all choices of such a basis \mathscr{B}. An endomorphism T is called diagonalisable, if all Jordan blocks in its Jordan normal form have size (1×1), that is, the Jordan normal form is a diagonal matrix. Obviously, T is nilpotent if and only if all diagonal entries in all Jordan blocks are equal to 0 .

From this result we immediately get:

Definition/Proposition 11.2 (Jordan decomposition)

Let $T \in \operatorname{End}(V)$ for a finite-dimensional \mathbb{C}-vector space V. The Jordan decomposition of T is an expression of T as $T=D+N$ with $D, N \in \operatorname{End}(V)$, such that D is diagonalisable, N is nilpotent and $D N=N D$. Both endomorphisms D and N are uniquely defined by these conditions. There is a polynomial $p \in \mathbb{C}[X]$ with $D=p(T)$.

Proof. We only give a rough idea here:
Choose a basis \mathscr{B} of V such that the matrix of T with respect to \mathscr{B} is in Jordan normal form. The matrix of D with respect to \mathscr{B} is the diagonal matrix containing only the diagonal entries of the

Jordan blocks, such that $N:=T-D$ is nilpotent. The endomorphisms D and N commute since for every Jordan block the two matrices

$$
\left[\begin{array}{ccccc}
\lambda_{i} & 0 & \cdots & \cdots & 0 \\
0 & \lambda_{i} & \ddots & 0 & \vdots \\
0 & 0 & \lambda_{i} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 0 & \lambda_{i}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{ccccc}
0 & 0 & \cdots & \cdots & 0 \\
1 & 0 & \ddots & 0 & \vdots \\
0 & 1 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1 & 0
\end{array}\right]
$$

commute. One proves next the existence of the polynomial p, which we skip here.
We need to prove the uniqueness. Let $T=D+N=\tilde{D}+\tilde{N}$ be two Jordan decompositions of T. Since D and \tilde{D} are polynomials in T, they commute with each other and thus can be diagonalised simultaneously. But then since $D+N=\tilde{D}+\tilde{N}$ we get $D-\tilde{D}=\tilde{N}-N$ is nilpotent which can only be if $D=\tilde{D}$.

Proposition 11.3 (Solubility implies zero traces)

Let L be a soluble subalgebra of $\operatorname{gl}(V)$ where V is a finite-dimensional \mathbb{C}-vector space. Then for all $x \in L$ and all $y \in[L, L]$ we have $\operatorname{Tr}(x y)=0$.

Proof. We use Lie's Theorem 10.4: There is a basis \mathscr{B} of V such that the every element $x \in L$ corresponds to a lower triangular matrix with respect to \mathscr{B}. Since $y \in[L, L]$ is a sum of commutators, the diagonal entries of its matrix with respect to \mathscr{B} are all zero. But then all diagonal entries of the matrix of $x y$ are zero and thus the trace of $x y$ is zero.

For the other direction, we need a slightly stronger hypothesis:

Proposition 11.4 (Zero traces imply solubility)

Let V be a finite-dimensional \mathbb{C}-vector space and L a Lie subalgebra of $g l(V)$. Suppose that $\operatorname{Tr}(x y)=0$ for all $x, y \in L$. Then L is soluble.

Proof. Not extremely difficult, but left out of these notes for the sake of brevity.
Surprisingly, these two can be put together for this result:

Theorem 11.5 (Criterion for solubility)

Let L be a finite-dimensional Lie algebra over \mathbb{C}. Then L is soluble if and only if $\operatorname{Tr}\left(x^{\text {ad }} y^{\text {ad }}\right)=0$ for all $x \in L$ and $y \in[L, L]$.

Proof. Assume that L is soluble. Then $L^{\text {ad }}$ is a soluble subalgebra of $\mathrm{gl}(L)$ by Theorem 5.7 and because ad is a homomorphism of Lie algebras. The statement of the theorem now follows immediately from Proposition 11.3 since $[u, v]^{\text {ad }}=\left[u^{\text {ad }}, v^{\text {ad }}\right]$ by the Jacobi identity.
Assume conversely that $\operatorname{Tr}\left(x^{\text {ad }} y^{\text {ad }}\right)=0$ for all $x \in L$ and all $y \in[L, L]$. Then Proposition 11.4 implies that $[L, L]^{\text {ad }}=\left[L^{\text {ad }}, L^{\text {ad }}\right]$ is soluble (using our hypothesis only for $x, y \in[L, L]$. Thus $L^{\text {ad }}$ itself is soluble since $\left[L^{\text {ad }}, L^{\text {ad }}\right]=\left(L^{\text {ad }}\right)^{(1)}$. But since $L^{\text {ad }} \cong L / Z(L)$ it follows using Theorem 5.7.(ii) that L itself is soluble as $Z(L)$ is abelian.

12 The Killing form

Definition/Proposition 12.1 (The Killing form)

Let L be a Lie algebra over a field \mathbb{F}. Then the mapping

$$
\begin{array}{rlcc}
\kappa: & L \times L & \rightarrow & \mathbb{F} \\
& (x, y) & \mapsto & \operatorname{Tr}\left(x^{\mathrm{ad}} y^{\mathrm{ad}}\right)
\end{array}
$$

is bilinear, that is, $\kappa(x+\lambda \tilde{x}, y)=\kappa(x, y)+\lambda \kappa(\tilde{x}, y)$ and $\kappa(x, y+\lambda \tilde{y})=\kappa(x, y)+\lambda \kappa(x, \tilde{y})$ for all $x, \tilde{x}, y, \tilde{y} \in L$ and all $\lambda \in \mathbb{F}$. The map κ is called the Killing form. It is symmetric, that is,

$$
\kappa(x, y)=\kappa(y, x) \quad \text { for all } x, y \in L
$$

The Killing form is associative, that is,

$$
\kappa([x, y], z)=\kappa(x,[y, z]) \quad \text { for all } x, y, z \in L
$$

The latter property comes from the fact that $\operatorname{Tr}((u v-v u) w)=\operatorname{Tr}(u(v w-w v))$ for all endomorphisms $u, v, w \in \operatorname{End}(V)$ for any vector space V.

We can now restate Theorem 11.5 using this language:

Theorem 12.2 (Cartan's First Criterion)

Let L be a finite-dimensional Lie algebra over \mathbb{C}. Then L is soluble if and only if $\kappa(x, y)=0$ for all $x \in L$ and $y \in[L, L]$.

The Killing form can not only " 'detect solubility", but also semisimplicity. We need a few more definitions.

Definition 12.3 (Perpendicular space, non-degeneracy)
Let V be a vector space over a field \mathbb{F} and $\tau: V \times V \rightarrow \mathbb{F}$ a symmetric bilinear form. For any subspace $W \leq V$ we define

$$
W^{\perp}:=\{v \in V \mid \tau(v, w)=0 \text { for all } w \in W\}
$$

and call it the perpendicular space of W. It is a subspace of V. We call τ non-degenerate, if $V^{\perp}=\{0\}$, that is, there is no $0 \neq u \in V$ with $\tau(u, v)=0$ for all $v \in V$. Otherwise, we call τ degenerate. If τ is non-degenerate, then

$$
\operatorname{dim}_{\mathbb{F}}(V)=\operatorname{dim}_{\mathbb{F}}(W)+\operatorname{dim}_{\mathbb{F}}\left(W^{\perp}\right)
$$

for all subspaces $W \leq V$.
Lemma 12.4 (Perpendicular space of ideals with respect to the Killing form)
Let L be a Lie algebra, K be an ideal of L and κ the Killing form of L. Then K^{\perp} (with respect to κ) is an ideal of L as well.

Proof. This uses the associativity of the Killing form: Let $x \in K^{\perp}$, that is, $\kappa(x, z)=0$ for all $z \in K$. We have $\kappa([x, y], z)=\kappa(x,[y, z])=0$ for all $y \in L$ and all $z \in K$ because $[y, z] \in K$.

Theorem 12.5 (Cartan's Second Criterion)

Let L be a finite-dimensional Lie algebra over \mathbb{C}. Then L is semisimple if and only if κ is nondegenerate.

Proof. Suppose that L is semisimple. By Lemma 12.4, the space L^{\perp} (with respect to κ) is an ideal of L, such that $\kappa(x, y)=0$ for all $x \in L^{\perp}$ and all $y \in\left[L^{\perp}, L^{\perp}\right]$ (indeed, even for all $y \in L$). Thus, by Theorem 12.2, the ideal L^{\perp} is soluble. However, because we assumed that L is semisimple, it has no soluble ideals except $\{0\}$ and thus $L^{\perp}=0$ and thus κ is non-degenerate.
Suppose that L is not semisimple. By Exercise 6 on Tutorial Sheet 2 it then has a non-zero abelian ideal A. Let $a \in A$ be a non-zero element. For every $x \in L$, the map $a^{\text {ad }} x^{\text {ad }} a^{\text {ad }}$ sends all of L to 0 , since $[[z, a], x] \in A$ and thus $[[[z, a], x], a]=0$ for every $z \in L$. Thus $\left(a^{\text {ad }} x^{\text {ad }}\right)^{2}=0$ and therefore $a^{\text {ad }} x^{\text {ad }}$ is a nilpotent endomorphism. However, nilpotent endomorphisms have trace 0 , so a is a non-zero element of L^{\perp} and κ is shown to be degenerate.

Lemma 12.6 (Killing form on ideal)

Let I be an ideal in a finite-dimensional Lie algebra over \mathbb{C}. Then I is in particular a subalgebra and thus a Lie algebra on its own. The Killing form of I is then the restriction of the Killing from of L to I :

$$
\kappa_{I}(x, y)=\kappa(x, y) \quad \text { for all } x, y \in I .
$$

Proof. Choose a basis of I and extend it to a basis of L. Then write matrices of $x^{\text {ad }}$ for elements $x \in I$ with respect to this basis. The result follows.
Lemma 12.7 (Ideals in semisimple Lie algebras)
Let I be a non-trivial proper ideal in a complex semisimple Lie algebra L, then $L=I \oplus I^{\perp}$. The ideal I is a semisimple Lie algebra in its own right.
Proof. Let κ denote the Killing form on L, it is non-degenerate by Cartan's Second Criterion 12.5 since L is semisimple. The restriction of κ to $I \cap I^{\perp}$ is identically 0 , so by Cartan's First Criterion 12.2 we get $I \cap I^{\perp}=0$ because L does not have a non-zero soluble ideal. Counting dimensions now gives $L=I \oplus I^{\perp}$.
We need to show that I is a semisimple Lie algebra. Suppose not, then its Killing form is degenerate (using Cartan's Second Criterion 12.5). Thus, there is an $0 \neq a \in I$ such that $\kappa_{I}(a, x)=0$ for all $x \in I$, where κ_{I} is the Killing form of I. By Lemma 12.6 this means that $\kappa(a, x)=0$ for all $x \in I$. But then $a \in L^{\perp}$ since $L=I \oplus I^{\perp}$ contradicting that L is semisimple.
Using Lemma 12.7 it is now relatively easy to prove Theorem 5.12:

Theorem 12.8 (Characterisation of semisimple Lie algebras)

A finite-dimensional Lie algebra L over \mathbb{C} is semisimple if and only if it is the finite direct sum of minimal ideals which are simple Lie algebras.
Proof. We only give the idea for the "only if" part: Use induction by the dimension, for the induction step choose a minimal non-zero ideal I and use Lemma 12.7 to write $L=I \oplus I^{\perp}$ and to show that I^{\perp} is again semisimple of lower dimension. The ideal I is a simple Lie algebra because it was chosen minimal.

13 Abstract Jordan decomposition

Can we have a Jordan decomposition in an abstract Lie algebra?
If L is a one-dimensional Lie algebra, then every linear map $\varphi: L \rightarrow \mathrm{gl}(V)$ is a representation. So in general, an element $x \in L$ can be mapped to an arbitrary endomorphism of V. However, for complex semisimple Lie algebras, we can do better:

Theorem 13.1 (Abstract Jordan decomposition)

Let L be a finite-dimensional semisimple Lie algebra. Each $x \in L$ can be written uniquely as $x=d+n$, where $d, n \in L$ are such that $d^{\text {ad }}$ is diagonalisable, $n^{\text {ad }}$ is nilpotent, and $[d, n]=0$. Furthermore, if $[x, y]=0$ for some $y \in L$, then $[d, y]=0=[n, y]$.
The decomposition $x=d+n$ as above is called abstract Jordan decomposition of x.
Proof. Omitted.
This in fact covers all representations of L :

Theorem 13.2 (Jordan decompositions)

Let L be a finite-dimensional semisimple Lie algebra over \mathbb{C} and let $\varphi: L \rightarrow \operatorname{gl}(V)$ by any representation. Let $x=d+n$ be the abstract Jordan decomposition of x. Then the Jordan decomposition of $x \varphi \in \operatorname{gl}(V)$ is $x \varphi=d \varphi+n \varphi$.
Proof. Omitted.

