Chapter 5

Jordan decomposition and Killing form

11 Jordan decomposition
We recall some definitions and results from linear algebra:

Definition/Proposition 11.1 (Jordan normal form)
Let V be an n-dimensional vector space over C and T € End(V). Then V has a basis 8 such that
the matrix corresponding to 7" with respect to 8B is of the block matrix form

J, 0 -+ 0
0o :
.. 0
0 0 J
and each J; is of the form ~ _
X O 0
1 A 0
0 1 A )
: .. .. .0
| 0 - 0 |

for some A; € C. The J; are called Jordan blocks, we say that such a matrix is in Jordan normal
form. The number of Jordan blocks with a given diagonal entry A and a given size is equal for
all choices of such a basis 8. An endomorphism 7 is called diagonalisable, if all Jordan blocks
in its Jordan normal form have size (1 x 1), that is, the Jordan normal form is a diagonal matrix.
Obviously, T is nilpotent if and only if all diagonal entries in all Jordan blocks are equal to 0.

From this result we immediately get:

Definition/Proposition 11.2 (Jordan decomposition)

Let T € End(V) for a finite-dimensional C-vector space V. The Jordan decomposition of T is an
expression of T as T = D 4+ N with D, N € End(V), such that D is diagonalisable, N is nilpotent
and DN = N D. Both endomorphisms D and N are uniquely defined by these conditions. There is
a polynomial p € C[X] with D = p(T).

Proof. We only give a rough idea here:

Choose a basis 8B of V such that the matrix of 7" with respect to 8B is in Jordan normal form. The
matrix of D with respect to 8B is the diagonal matrix containing only the diagonal entries of the
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Jordan blocks, such that N := T — D is nilpotent. The endomorphisms D and N commute since
for every Jordan block the two matrices

A0 oo oo 0 o o0 ... ... 0
0 » . 0 1 0 . 0 °:
0 0 A .o and 0 1 o0
T Do

0 - 0 0 A 0 - 0 1 0|

commute. One proves next the existence of the polynomial p, which we skip here.

We need to prove the uniqueness. Let T = D + N = D + N be two Jordan decompositions of T'.
Since D and D are polynomials in 7', they commute with each other and thus can be diagonalised
simultaneously. But then since D + N = D+ N we get D — D=N—-Nis nilpotent which can
only be if D = D. |

Proposition 11.3 (Solubility implies zero traces)
Let L be a soluble subalgebra of gl(V) where V is a finite-dimensional C-vector space. Then for all
x € Landall y € [L, L] we have Tr(xy) = 0.

Proof. We use Lie’s Theorem 10.4: There is a basis 8 of V such that the every element x € L
corresponds to a lower triangular matrix with respect to 8. Since y € [L, L] is a sum of commuta-
tors, the diagonal entries of its matrix with respect to 8B are all zero. But then all diagonal entries of
the matrix of xy are zero and thus the trace of xy is zero. |

For the other direction, we need a slightly stronger hypothesis:

Proposition 11.4 (Zero traces imply solubility)
Let V be a finite-dimensional C-vector space and L a Lie subalgebra of gl(V). Suppose that
Tr(xy) = Oforall x, y € L. Then L is soluble.

Proof. Not extremely difficult, but left out of these notes for the sake of brevity. |

Surprisingly, these two can be put together for this result:

Theorem 11.5 (Criterion for solubility)
Let L be a finite-dimensional Lie algebra over C. Then L is soluble if and only if Tr(x?y*!) = 0
forallx e Landy € [L, L].

Proof.  Assume that L is soluble. Then L is a soluble subalgebra of gl(L) by Theorem 5.7
and because ad is a homomorphism of Lie algebras. The statement of the theorem now follows
immediately from Proposition 11.3 since [u, v]* = [1®¢, v*] by the Jacobi identity.

Assume conversely that Tr(x*y*) = O forall x € L and all y € [L, L]. Then Proposition 11.4
implies that [L, L] = [L*, L%] is soluble (using our hypothesis only for x, y € [L, L]. Thus
L itself is soluble since [L*, L3] = (L2)M, But since L* = L/Z(L) it follows using Theo-
rem 5.7.(ii) that L itself is soluble as Z (L) is abelian. |

12 The Killing form

Definition/Proposition 12.1 (The Killing form)
Let L be a Lie algebra over a field F. Then the mapping

k: LxL — F
(x,y) > Tr(x*y)
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is bilinear, that is, x (x + AX, y) = «(x, y) + Ak (X, y) and k (x, y + Ay) = k(x, y) + A« (x, ¥) for
all x,X,y,y € L and all > € . The map « is called the Killing form. It is symmetric, that is,

k(x,y) =«x(y,x) forall x,y € L.
The Killing form is associative, that is,
k([x,y],2) = «k(x, [y, z]) forall x, y,z € L.

The latter property comes from the fact that Tr((uv — vu)w) = Tr(u(vw — wv)) for all endomor-
phisms u, v, w € End(V) for any vector space V.

We can now restate Theorem 11.5 using this language:

Theorem 12.2 (Cartan’s First Criterion)
Let L be a finite-dimensional Lie algebra over C. Then L is soluble if and only if « (x, y) = 0 for
allx e Landy € [L, L].
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The Killing form can not only ”‘detect solubility
definitions.

, but also semisimplicity. We need a few more

Definition 12.3 (Perpendicular space, non-degeneracy)
Let V be a vector space over a field F and 7 : V x V — [F a symmetric bilinear form. For any
subspace W < V we define

Wt :={veV]|tw w)=0foralwe W}

and call it the perpendicular space of W. It is a subspace of V. We call T non-degenerate, if
V+ = {0}, that is, there is no 0 # u € V with t(u, v) = 0 for all v € V. Otherwise, we call T
degenerate. If 7 is non-degenerate, then

dimp(V) = dimp(W) + dimp(W)
for all subspaces W < V.

Lemma 12.4 (Perpendicular space of ideals with respect to the Killing form)
Let L be a Lie algebra, K be an ideal of L and « the Killing form of L. Then K+ (with respect to «)
is an ideal of L as well.

Proof.  This uses the associativity of the Killing form: Let x € K+, that is, k(x, z) = 0 for all
z € K. We have «([x, y],z) =«(x,[y,z]) =0forall y € L and all z € K because [y,z] € K. B

Theorem 12.5 (Cartan’s Second Criterion)
Let L be a finite-dimensional Lie algebra over C. Then L is semisimple if and only if « is non-
degenerate.

Proof. Suppose that L is semisimple. By Lemma 12.4, the space L (with respect to ) is an ideal
of L, such that x(x, y) = Oforall x € L+ and all y € [L+, L] (indeed, even for all y € L). Thus,
by Theorem 12.2, the ideal L' is soluble. However, because we assumed that L is semisimple, it
has no soluble ideals except {0} and thus L = 0 and thus « is non-degenerate.

Suppose that L is not semisimple. By Exercise 6 on Tutorial Sheet 2 it then has a non-zero abelian
ideal A. Let a € A be a non-zero element. For every x € L, the map a*!x*a* sends all of L
to 0, since [[z, a], x] € A and thus [[[z, a], x], a] = O for every z € L. Thus (a®*x*)? = 0 and
therefore a®x? is a nilpotent endomorphism. However, nilpotent endomorphisms have trace 0, so
a is a non-zero element of L and « is shown to be degenerate. |
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Lemma 12.6 (Killing form on ideal)
Let I be an ideal in a finite-dimensional Lie algebra over C. Then [ is in particular a subalgebra
and thus a Lie algebra on its own. The Killing form of 7 is then the restriction of the Killing from
of LtoI:

ki(x,y) =«(x,y) forallx,y e I.

Proof. Choose a basis of I and extend it to a basis of L. Then write matrices of x for elements
x € I with respect to this basis. The result follows. |

Lemma 12.7 (Ideals in semisimple Lie algebras)
Let I be a non-trivial proper ideal in a complex semisimple Lie algebra L, then L = I @ I*. The
ideal I is a semisimple Lie algebra in its own right.

Proof. Let « denote the Killing form on L, it is non-degenerate by Cartan’s Second Criterion 12.5
since L is semisimple. The restriction of « to I N I+ is identically 0, so by Cartan’s First Crite-
rion 12.2 we get I NI+ = 0 because L does not have a non-zero soluble ideal. Counting dimensions
now gives L = 1 & I+.

We need to show that 7 is a semisimple Lie algebra. Suppose not, then its Killing form is degenerate
(using Cartan’s Second Criterion 12.5). Thus, there is an 0 #% a € [ such that «;(a, x) = 0 for all
x € I, where k; is the Killing form of /. By Lemma 12.6 this means that x (a, x) = O forall x € I.
But then a € L~ since L = I @ I+ contradicting that L is semisimple. |

Using Lemma 12.7 it is now relatively easy to prove Theorem 5.12:

Theorem 12.8 (Characterisation of semisimple Lie algebras)
A finite-dimensional Lie algebra L over C is semisimple if and only if it is the finite direct sum of
minimal ideals which are simple Lie algebras.

Proof. = We only give the idea for the “only if”” part: Use induction by the dimension, for the
induction step choose a minimal non-zero ideal I and use Lemma 12.7 to write L = I @ I+ and to
show that /= is again semisimple of lower dimension. The ideal I is a simple Lie algebra because
it was chosen minimal. |

13 Abstract Jordan decomposition

Can we have a Jordan decomposition in an abstract Lie algebra?

If L is a one-dimensional Lie algebra, then every linear map ¢ : L — gl(V) is a representation.
So in general, an element x € L can be mapped to an arbitrary endomorphism of V. However, for
complex semisimple Lie algebras, we can do better:

Theorem 13.1 (Abstract Jordan decomposition)

Let L be a finite-dimensional semisimple Lie algebra. Each x € L can be written uniquely as
x = d + n, where d,n € L are such that d*¢ is diagonalisable, n* is nilpotent, and [d, n] = 0.
Furthermore, if [x, y] = 0 for some y € L, then [d, y] =0 = [n, y].

The decomposition x = d + n as above is called abstract Jordan decomposition of x.

Proof.  Omitted. u
This in fact covers all representations of L:

Theorem 13.2 (Jordan decompositions)

Let L be a finite-dimensional semisimple Lie algebra over C and let ¢ : L — gl(V) by any repre-
sentation. Let x = d +n be the abstract Jordan decomposition of x. Then the Jordan decomposition
of xp € gl(V)isxp =do + ne.

Proof. Omitted. |



