
Chapter 6

Classification of semisimple Lie algebras

When we studied sl2(C), we discovered that it is spanned by elements e, f and h fulfilling the
relations:

[e, h] = −2e, [ f, h] = 2 f and [e, f ] = h.

Furthermore h was diagonalisable in every irreducible representation and H := Span(h) is obvi-
ously an abelian subalgebra. Note that h = h + 0 is the abstract Jordan decomposition of h, that
H = CL(H) is the weight space of H , acting on L with the adjoint action, corresponding to the
weight 0 ∈ H ∗. Likewise, Span(e) is the weight space for the weight c · h 7→ −2c for c ∈ C, and
Span( f ) is the weight space for the weight c · h 7→ 2c for c ∈ C.
This approach can be generalised. Our big plan will be:

1. Find a maximal abelian subalgebra H consisting of elements that are diagonalisable in every
representation.

2. Restrict the adjoint representation of L to H and show that L is the direct sum of weight
spaces with respect to H (“root space decomposition”).

3. Prove general results about the set of weights (“root systems”).

4. Show that the isomorphism type of L is completely determined by its root system.

5. Classify such root systems.

The rest of the course will be more expository than before.

14 Maximal toral subalgebras
Definition 14.1 (Semisimple elements)
Let L be a finite-dimensional semisimple Lie algebra over C. An element x ∈ L is called semisim-
ple, if its abstract Jordan decomposition is x = x + 0, that is, the nilpotent part is equal to zero (see
Theorem 13.1). This means, that x acts diagonalisably on every L-module (see Theorem 13.2).

Definition 14.2 (Maximal toral subalgebras)
Let L be a finite-dimensional semisimple Lie algebra over C. A toral subalgebra T is a subalgebra
consisting of semisimple elements. A toral subalgebra T ≤ L is called a maximal toral subal-
gebra if L has no toral subalgebra properly containing T . It is clear that every finite-dimensional
semisimple Lie algebra over C has a maximal toral subalgebra. All these are non-zero since L
contains semisimple elements (because of Theorem 13.1, note that if all elements of L were equal
to their nilpotent part in the abstract Jordan decomposition, then they would in particular be ad-
nilpotent and thus L would be nilpotent, a contradiction to being semisimple).
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Lemma 14.3 (Maximal toral subalgebras are abelian)
Let L be a finite-dimensional semisimple Lie algebra over C. Every maximal toral subalgebra T of
L is abelian.

Proof. Omitted. �

Definition 14.4 (Cartan subalgebra)
Let L be a finite-dimensional semisimple Lie algebra over C. A maximal abelian toral subalgebra
is called Cartan subalgebra. By Lemma 14.3 every such L has a Cartan subalgebra since every
maximal toral subalgebra is abelian.

Theorem 14.5 (Cartan subalgebras are self-centralising)
Let H be a Cartan subalgebra of a finite-dimensional semisimple Lie algebra L over C. Then
CL(H) = H .

Proof. Omitted. �

Theorem 14.6 (Simultaneous diagonalisation)
Let T1, T2, . . . , Tk ∈ End(V ) be endomorphisms of a finite-dimensional F-vector space V . Suppose
that all Ti are diagonalisable and that Ti Tj = Tj Ti for all 1 ≤ i < j ≤ k. Then there is a basis B of
V such that the matrices of all Ti with respect to B are diagonal.

Proof. Omitted here, see Exercise 3 of tutorial sheet 3 or a text on Linear Algebra. �

For the rest of the chapter L will always be a finite-dimensional semisimple Lie algebra over C and
H a Cartan subalgebra. We denote the Killing form by κ .

Definition/Proposition 14.7 (Root space decomposition)
In this situation, L is an H -module by the adjoint action of H on L: The map

ad|H : H → Lie(End(L))
h 7→ had

is a representation of H . We consider all its weight spaces (see Definition 10.1). Let 8 ⊆ H ∗

be the set of non-zero weights, note that the zero map (h 7→ 0) is a weight and that L0 = H by
Theorem 14.5.
The space L is the direct sum of the weight spaces for H :

L = H ⊕
⊕
α∈8

Lα.

This decomposition is called the root space decomposition of L with respect to H . As defined in
Definition 10.1, we have

Lα = {x ∈ L | [x, h] = (hα) · x for all h ∈ H} .

The set8 is called the set of roots of L with respect to H and the Lα for α ∈ 8∪ {0} are called the
root spaces. Note that we immediately conclude from the finite dimension of L that 8 is finite!

Proof. Let h1, . . . , hk be a basis of H . Since H is abelian, the endomorphisms had
1 , . . . , had

k ∈

End(L) fulfill the hypothesis of Theorem 14.6. Thus L has a basis B of simultaneous eigenvectors
of the had

i . Since every element of B is contained in a root space, L is the sum of the weight spaces.
The intersection of two root spaces Lα and Lβ for α 6= β is equal to the zero space, since if
hα 6= hβ, then x ∈ Lα ∩ Lβ implies (hα)x = xh = (hβ)x and thus x = 0. A short inductive
argument shows that the sum of all root spaces in the root space decomposition is in fact direct (just
add in one root space at a time). �
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In the sequel we will study the set 8 of roots.

Lemma 14.8 (Properties of 8)
Suppose that α, β ∈ 8 ∩ {0}. Then:

(i) [Lα, Lβ] ≤ Lα+β .

(ii) If α + β 6= 0, then κ(Lα, Lβ) = {0}.

(iii) The restriction of κ to L0 is non-degenerate.

Proof. Let x ∈ Lα and y ∈ Lβ . Then

[[x, y], h] = [[x, h], y] + [x, [y, h]] = (hα)[x, y] + (hβ)[x, y] = (h(α + β))[x, y],

thus [x, y] ∈ Lα+β which proves (i).
For (ii), we conclude from α + β 6= 0 that there is some h ∈ H with h(α + β) 6= 0. Then

(hα)κ(x, y) = κ([x, h], y) = κ(x, [h, y]) = −(hβ)κ(x, y),

and thus (h(α + β) · κ(x, y) = 0. Therefore, κ(x, y) = 0.
For (iii), suppose that z ∈ L0 and κ(z, x0) = 0 for all x0 ∈ L0. Since every x ∈ L can be written as

x = x0 +
∑
α∈8

xα

with xα ∈ Lα, we immediately get κ(z, x) = 0 for all x ∈ L from (ii) contradicting the non-
degeneracy of κ on L . �

Quite surprisingly, every semisimple Lie algebra over C contains lots of copies of sl2(C):

Theorem 14.9 (Copies of sl2(C) in L)
Let α ∈ 8 and 0 6= e ∈ Lα. Then −α is a root and there exists f ∈ L−α such that Span(e, f, h)
with h := [e, f ] is a Lie subalgebra of L with

[e, h] = −2e and [ f, h] = 2 f.

Thus, it is isomorphic to sl2.

Note that we can replace (e, f, h) by (λe, f/λ, h) for some 0 6= λ ∈ C without changing the
relations. However, h and Span(e, f, h) remains always the same!

Proof. This proof was not be presented in the class but is contained in the notes for the sake of
completeness.
Since κ is non-degenerate, there is an x ∈ L with κ(e, x) 6= 0. Write x =

∑
α∈8∪{0} xα with

xα ∈ Lα. By Lemma 14.8.(ii) we conclude that x−α 6= 0 and κ(e, x−α) 6= 0. Therefore, −α is a
root. Set f̃ := x−α. Since α 6= 0 there is a t ∈ h with tα 6= 0. Thus

κ([e, f̃ ], t) = κ(e, [ f̃ , t]) = −(tα) · κ(e, f̃ ) 6= 0

showing that h̃ := [e, f̃ ] 6= 0. Note that f̃ ∈ H = L0 by Lemma 14.8.(i).
We claim that h̃α 6= 0. Namely, if h̃α were equal to 0, then [e, h̃] = (h̃α)e = 0 and [ f̃ , h̃] =
−(h̃α) f̃ = 0. Therefore by Proposition 14.10 h̃ad would be nilpotent. However, h̃ is semisimple,
and the only semisimple and nilpotent element is 0. We can now set f := −2 f̃ /(h̃α) and h :=
[e, f ] = −2h̃/(h̃α) to get the relations in the theorem. �

Note that by this L is an sl2(C)-module in many ways! This allows us to use our results about the
representations of sl2(C) for every α ∈ 8 separately!
We have used:

Proposition 14.10
Let x, y ∈ End(V ) be endomorphism of the finite-dimensional complex vector space V . Suppose
that both x and y commute with [x, y] = xy − yx . Then [x, y] is a nilpotent map.
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15 Root systems

We keep our general hypothesis that L is a finite-dimensional semisimple Lie algebra over C with
Cartan subalgebra H and corresponding set of roots 8.
For this section, let E be a finite-dimensional vector space over R with a positive definite symmetric
bilinear form (−|−) : E × E → R (“positive definite” means (x |x) > 0 if and only if x 6= 0).

Definition 15.1 (Reflections)
For v ∈ E , the map

sv : E → E
x 7→ x − 2(x |v)

(v|v)
v

is called the reflection along v. It is linear, interchanges v and −v and fixes the hyperplane orthog-
onal to v. As an abbreviation, we use 〈x |v〉 := 2(x |v)

(v|v)
for x, v ∈ E , note that 〈−|−〉 is only linear in

the first component. We have xsv = x − 〈x |v〉 v.

Definition 15.2 (Root system)
A subset R ⊆ E is called a root system, if

(R1) R is finite, Span(R) = E and 0 /∈ R.

(R2) If α ∈ R, then the only scalar multiples of α in R are α and −α.

(R3) If α ∈ R, then sα permutes the elements of R.

(R4) If α, β ∈ R, then 〈α|β〉 ∈ Z.

Theorem 15.3 (8 is a root system)
Then 8 is a root system if we take E to be the R-span of 8 with the bilinear form induced by the
Killing form κ .

Proposition 15.4 (Moving forms)
The Killing form κ restricted to H is non-degenerate by Lemma 14.8.(iii). Therefore, the linear
map

H → H ∗

h 7→ (x 7→ κ(h, x))

is injective and thus bijective since H and H ∗ have the same finite dimension. Therefore, for every
α ∈ H ∗, there is a unique tα ∈ H with xα = κ(tα, x) for all x ∈ H . We set (α|β) := κ(tα, tβ) for
all α, β ∈ H ∗, this defines a non-degenerate bilinear form on H ∗, which we call the bilinear form
on H ∗ induced by κ .

The proof of Theorem 15.3 works through a series of little results always using all those sl2(C)-
subalgebras and the fact that L is an sl2(C)-module in different ways. Here we just look at a few of
them without proofs:

Lemma 15.5
Let α ∈ 8. If x ∈ L−α and y ∈ Lα, then [x, y] = κ(x, y)tα.

Proof. For all h ∈ H , we have

κ([x, y], h) = κ(x, [y, h]) = (hα)κ(x, y) = κ(tα, h)κ(x, y) = κ(κ(x, y)tα, h).

Thus [x, y] − κ(x, y)tα ∈ H⊥ and is therefore equal to 0, since κ is non-degenerate on H . �
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Lemma 15.6
Let α ∈ 8 and 0 6= e ∈ Lα and slα := Span(e, f, h) as in Theorem 14.9. If M is an slα-submodule
of L , then the eigenvalues of h on M are integers.

Proof. Follows immediately from Weyl’s Theorem and our classification of sl2-modules. �

Lemma 15.7
Let α ∈ 8. The root spaces Lα and L−α are 1-dimensional. Moreover, the only scalar multiples of
α that are in 8 are α itself and −α.

Note that it follows that this now identifies the copy of sl2(C) sitting in Lα ⊕ H ⊕ L−α uniquely
since we only have a choice for e ∈ Lα up to a scalar. All these choices give us the same slα. It even
identifies a unique hα ∈ H !

Lemma 15.8
Suppose that α, β ∈ 8 and β /∈ {α,−α}. Then:

(i) hαβ =
2(β|α)
(α|α)
= 〈β|α〉 ∈ Z.

(ii) There are integers r, q ≥ 0 such that for all k ∈ Z, we have β + kα ∈ 8 if and only if
−r ≤ k ≤ q . Moreover, r − q = hαβ.

(iii) β − (hαβ) · α = β − 〈β|α〉α = βsα ∈ 8.

(iv) Span(8) = H ∗.

Lemma 15.9
If α and β are roots, then κ(hα, hβ) ∈ Z and (α|β) = κ(tα, tβ) ∈ Q.
It follows, that if {α1, . . . , αn} ⊆ 8 is a basis of H ∗ and β ∈ 8, then β is a linear combination of
the αi with coefficients in Q.

Proposition 15.10
The bilinear form defined by (α|β) := κ(tα, tβ) is a positive definite symmetric bilinear form on the
real span E of 8.

16 Dynkin diagrams

In this section we will classify all possible root systems, we will only use the axioms in Defini-
tion 15.2.

Lemma 16.1 (Finiteness Lemma)
Let R be a root system in a finite-dimensional real vector space E equipped with a positive-definite
symmetric bilinear form (−|−) : E × E → R. Let α, β ∈ R with β /∈ {α,−α}. Then

〈α|β〉 · 〈β|α〉 ∈ {0, 1, 2, 3}.

Proof. By (R4), the product is an integer. We have

(x |y)2 = (x |x) · (y|y) · cos2(θ)

if θ is the angle between two non-zero vectors x, y ∈ E . Thus 〈x |y〉 · 〈y|x〉 = 4 cos2 θ and this must
be an integer. If cos2 θ = 1, then θ is an integer multiple of π and so α and β are linearly dependent
which is impossible because of our assumptions and (R2). �
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We immediately conclude that there are only very few possibilities for 〈α|β〉, 〈β|α〉, the angle θ and
the ratio (β|β)/(α|α) (without loss of generality we assume (β|β) ≥ (α|α)):

〈α|β〉 〈β|α〉 θ
(β|β)

(α|α)
0 0 π/2 −

1 1 π/3 1
−1 −1 2π/3 1
1 2 π/4 2
−1 −2 3π/4 2
1 3 π/6 3
−1 −3 5π/6 3

Lemma 16.2
Let R be a root system with E as in Lemma 16.1 and let α, β ∈ R with (α|α) ≤ (β|β). If the angle
between α is strictly obtuse, then α + β ∈ R. If the angle between α and β is strictly acute, then
α − β ∈ R.

Proof. Use (R3) saying that αsβ = α − 〈α|β〉β ∈ R together with the above table. �

Example 16.3 (Examples of root systems)
The following are two different root systems in R2:

β

α−α

α+β

−β−(α+β)

α+β 2α+β

−β

−(α+β)

−(2α+β)

−α α

β

Check the axioms yourself. You find examples for most but not all cases in the above table.

Definition 16.4 (Bases for root systems)
Let R be a root system in a real vector space E . A subset B ⊆ R is called a base of R, if

(B1) B is a vector space basis of E , and

(B2) every α ∈ R can be written as α =
∑

β∈B kββ with kβ ∈ Z, such that all the non-zero
coefficients kβ are either all positive or all negative.

For a fixed base B, we call α positive if all its non-zero coefficients with respect to B are positive
and negative otherwise. We denote the subset of R of positive roots by R+ and the subset of
negative roots R−.

Note that some coefficients can be equal to zero, only the non-zero ones need to have the same
sign! Note furthermore that the definition of R+ and R− actually depends on B and that there are
different choices for B possible! For example, for any base B, the set −B is also a base!

Theorem 16.5 (Existence of bases for root systems)
Let R be a root system in the real vector space E . Then R has a base B.



36 CHAPTER 6. CLASSIFICATION OF SEMISIMPLE LIE ALGEBRAS

Proof. Omitted here. �

Example 16.6 (Example of a root system)
In the following two diagrams we have coloured a base of the root system in blue and one in red:

−α

−(α+β)

α

β

−β

α+β
2α+β

−β

−(α+β)

−α α

β α+β

−(2α+β)

So in the first diagram, both (α, β) and (α + β,−β) are bases. In the second diagram, both (β, α)
and (α + β,−(2α + β)) are bases. These are not all possible choices!

Definition 16.7 (Isomorphism of root systems)
Let R1 ⊆ E1 and R2 ⊆ E2 be two root systems. An isomorphism between the two root systems R1

and R2 is a bijective R-linear map ψ : E1 → E2 such that

(i) R1ψ = R2, and

(ii) for any α, β ∈ R1 we have 〈α|β〉 = 〈αψ |βψ〉.

Note that condition (ii) basically ensures that the angle θ between αψ and βψ is the same as the
angle between α and β since 4 cos2 θ = 〈α|β〉 · 〈β|α〉.
We can now come up with a graphical way to describe root systems. At first however, it seems that
we describe a basis of a root system!

Definition 16.8 (Coxeter graphs and Dynkin diagrams)
Let R be a root system in a real vector space E and let B = (b1, . . . , bn) be a base of R. The
Coxeter graph of B is an undirected graph with n vertices, one for every element bi and with〈
bi |bj

〉
·
〈
bj |bi

〉
edges between vertex bi and bj for all 1 ≤ i < j ≤ n. In the Dynkin diagram,

we add for any pair of vertices bi 6= bj for which (bi |bi ) 6= (bj |bj ) (which are then necessarily
connected) an arrow from the vertex corresponding to the longer root to the one corresponding to
the longer root.

Example 16.9 (Dynkin diagrams)
Here are the two Dynkin diagrams for the base (α, β) in each of the two root systems in Exam-
ple 16.6:

βα βα

Surprisingly, the information in the Dynkin diagram is sufficient to describe the isomorphism type
of the root system:

Proposition 16.10 (Dynkin diagram decides isomorphism type)
Let R1 ⊆ E1 and R2 ⊆ E2 be two root systems and let B1 be a base of R1 and B2 one of R2. If
there is a bijection ψ : B1 → B2 such that ψ maps the Dynkin diagram of B1 to the one of B2,
then R1 and R2 are isomorphic in the sense of Definition 16.7.
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More formally, if
〈α|β〉 · 〈β|α〉 = 〈αψ |βψ〉 · 〈βψ |αψ〉

and (α|α) < (β|β) if and only if (αψ |αψ) < (βψ |βψ) for all α, β ∈ B1, then the R-linear
extension of ψ to an R-linear map from E1 → E2 is an isomorphism between the root systems R1

and R2.

Proof. Omitted. �

Proposition 16.11 (Dynkin diagram is property of isomorphism type)
If two root systems are isomorphic then they have the same Dynkin diagram. In particular, the
Dynkin diagram does not depend on the choice of base.

Proof. Omitted. �

So Dynkin diagrams are the same as isomorphism types of root systems.

17 How everything fits together
Definition 17.1 (Irreducible root systems)
A root system R is called irreducible, if it cannot be written as the disjoint union R1 ∪ R2 such that
(α|β) = 0 whenever α ∈ R1 and β ∈ R2.

Lemma 17.2 (Root systems can be decomposed into irreducible ones)
Let R be a root system in the real vector space E . Then R is the disjoint union R = R1 ∪ · · · ∪ Rk

of subsets R1, . . . , Rk where each Ri is an irreducible root system in Ei := Span(Ri ) and E is an
orthogonal direct sum of the subspaces E1, . . . , Ek .

Proof. Omitted here. �

Note that both root systems in Example 16.3 are irreducible.

Proposition 17.3 (Irreducibility in the Dynkin diagram)
A root system is irreducible if and only if its Dynkin diagram is connected.

Proof. Follows immediately from the definitions of “irreducible” for root systems and of Dynkin
diagrams. �
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Theorem 17.4 (Classification of irreducible root systems)
Every irreducible root system has one of the following Dynkin diagrams and these diagrams all
occur as Dynkin diagrams of a root system:

An(n ≥ 1):

Bn(n ≥ 2):

Cn(n ≥ 3):

Dn(n ≥ 4):

E6:

E7:

E8:

F4:

G2:

The first four types An to Dn cover each infinitely many cases. Each diagram has n vertices. The
restrictions on n are there to avoid duplicates.

Proof. Very nice, but omitted here, unfortunately. �
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We have now done the following:

F.d. semisimple Lie algebra L over C

we choose
��

Cartan subalgebra H

which gives
��

Root space decomposition L = H ⊕
⊕

α∈8
Lα

which defines
��

Root system 8 ⊆ H ∗

we choose
��

Base B of root system 8

which defines
��

Dynkin diagram

The big plan is:

• We know all resulting diagrams that can possibly occur.
• The result does not depend on our choices (we need to show this!).
• Two isomorphic Lie algebras give the same Dynkin diagram.
• Two non-isomorphic Lie algebras give different Dynkin diagrams.
• All Dynkin diagrams actually occur.
• L is simple if and only if the Dynkin diagram is irreducible.

To this end, we would need to prove the following results:

Theorem 17.5
Let L be a finite dimensional semisimple Lie algebra over C and let H1 and H2 be two Cartan
subalgebras with associated root systems 81 and 82. Then 81 and 82 are isomorphic as root
systems.

Theorem 17.6 (Serre)
Let8 be an irreducible root system with n vertices and base B = (b1, . . . , bn) and let ci, j :=

〈
bi |bj

〉
for 1 ≤ i, j ≤ n (the so-called Cartan matrix).
Let L be the Lie algebra over C generated by generators ei , fi and hi for 1 ≤ i ≤ n subject to the
relations

(S1) [hi , h j ] = 0 for all 1 ≤ i, j ≤ n,
(S2) [ei , h j ] = ci, j ei and [ fi , h j ] = −ci, j fi ,
(S3) [ei , fi ] = hi for all 1 ≤ i ≤ n and [ei , f j ] = 0 for all i 6= j ,
(S4) (ei )(ead

j )
1−ci, j = 0 and ( fi )( f ad

j )
1−ci, j = 0 if i 6= j .

Then L is finite dimensional and semisimple, H := Span(h1, . . . , hn) is a Cartan subalgebra and its
root system is isomorphic to 8.

Theorem 17.7
Let L be a finite dimensional simple Lie algebra over C with root system 8. Then 8 is irreducible.


