UNIVERSITY OF ST ANDREWS
 MT5827 Lie Algebras
 Tutorial Sheet: Chapters 1 and 2

1. Show that the following two subspaces of $\mathbb{C}^{1 \times 3}$ are equal:

- $\operatorname{Span}([1,0,-1],[0,2,1],[1,2,0])$ and
- $\left\{[x, y, z] \in \mathbb{C}^{1 \times 3} \mid z=y / 2-x\right\}$.

Determine their dimension.
2. Show that $\mathbb{C}^{1 \times 3}$ has the following direct sum decomposition:

$$
\mathbb{C}^{1 \times 3}=\operatorname{Span}([1,2,3]) \oplus\left\{[x, y, z] \in \mathbb{C}^{1 \times 3} \mid z=x-y\right\} .
$$

3. Let $V:=\mathbb{C}^{1 \times 3}$ and $W:=\operatorname{Span}([1,1,1])$. Find a complement of W in V, that is, a subspace U of V such that $V=W \oplus U$.
4. Let $L:=\mathbb{R}^{1 \times 3}$ be the 3 -dimensional real row space with the following product:

$$
[[a, b, c],[x, y, z]]:=[a, b, c] \times[x, y, z]:=[b z-c y, c x-a z, a y-b x] .
$$

Show that this product fulfills the Jacobi identity.
5. Let L be a Lie algebra over a field \mathbb{F} and H a subspace of L (not necessarily a subalgebra). Use the Jacobi identity to show that both the normaliser $N_{L}(H)$ and the centraliser $C_{L}(H)$ are Lie subalgebras of L.
6. Let $L=\mathbb{C}^{n \times n}$ with $n \geq 2$. Show that the subspace K of skew-symmetric matrices, i.e. $\left\{A \in \mathbb{C}^{n \times n} \mid A^{t}=-A\right\}$ where A^{t} is the transposed matrix of A, is not an ideal.
7. Let L be any Lie algebra over a field \mathbb{F}. Show that the members of the lower central series

$$
L=L^{0} \supseteq L^{1}=[L, L] \supseteq L^{2} \supseteq \cdots
$$

are in fact ideals in L.
8. Let L be any Lie algebra over a field \mathbb{F}. Show that the members of the derived series

$$
L=L^{(0)} \supseteq L^{(1)}=[L, L] \supseteq L^{(2)} \supseteq \cdots
$$

are in fact ideals in L.

