UNIVERSITY OF ST ANDREWS MT5827 Lie Algebras Tutorial Sheet 2: Chapter 2

1. Assume that L_1 and L_2 are Lie algebras over \mathbb{C} . Form $L := L_1 \oplus L_2$, the vector space direct sum. Show that L is a Lie algebra with the Lie product

$$[(x,y),(u,v)] := ([x,u],[y,v]),$$

where we denote elements of L as pairs (x, y) with $x \in L_1$ and $y \in L_2$.

- 2. Show that if L is a soluble (nilpotent, respectively) Lie algebra and $\varphi : L \to H$ is a Lie algebra homomorphism, then the image $L\varphi$ is soluble (nilpotent, respectively) as well.
- **3.** Let L be a Lie algebra of dimension n and suppose Z := Z(L), the centre of L, has dimension at least n 1. Prove that L is abelian.
- 4. Let L be a 3-dimensional Lie algebra over \mathbb{C} with basis (x, y, z) such that

 $[x, y] = 0, \quad [x, z] = x \text{ and } [y, z] = y.$

Find bases for L^1 and L^2 . What is the centre of L?

- **5.** Compute the radical $\operatorname{rad}(L)$ for $L = \operatorname{Lie}(\mathbb{C}^{2 \times 2})$.
- 6. Let L be a Lie algebra over \mathbb{C} with no no-zero abelian ideals. Prove that L has no non-zero soluble ideals.
- 7. Assume L_1, \ldots, L_k are simple Lie algebras over \mathbb{C} . We form their direct sum $L := L_1 \oplus \cdots \oplus L_k$ as in Exercise 1. Show that L is semisimple and that all L_i are minimal ideals in L.