UNIVERSITY OF ST ANDREWS
 MT5827 Lie Algebras
 Tutorial Sheet 3: Chapters 3 and 4

1. Check for the action of $\mathrm{sl}_{2}(\mathbb{C})$ on the module V_{d} given in Proposition 7.1 of the course that the relations $[e, f]=h$ and $[h, e]=2 e$ and $[h, f]=-2 f$ hold on all basis vectors, that is

$$
\left(X^{a} Y^{b}\right) h=\left(\left(X^{a} Y^{b}\right) e\right) f-\left(\left(X^{a} Y^{b}\right) f\right) e
$$

for all $a, b \in \mathbb{N} \cup\{0\}$ with $a+b=d$, and the same for the other two relations.
2. Use the classification of $\mathrm{sl}_{2}(\mathbb{C})$-modules in the course to write down all isomorphism types of 5 -dimensional representations of $\mathrm{sl}_{2}(\mathbb{C})$.
3. Let V be a finite-dimensional vector space over \mathbb{F} and let $S, T \in \operatorname{End}(V)$ be two endomorphisms that commute, that is, $S T=T S$. Let $0<W \leq$ V be the eigenspace for the eigenvalue λ of S. Show that W is invariant under T, that is, $W T \leq W$.
Conclude from this that if both S and T are diagonalisable, then there is a basis $\left(v_{1}, \ldots, v_{n}\right)$ of V such that both S and T correspond to diagonal matrices with respect to this basis.

