UNIVERSITY OF ST ANDREWS MT5827 Lie Algebras Tutorial Sheet 5: Chapters 5 and 6

- 1. Let $A, B \in \mathbb{F}^{n \times n}$ be square matrices over the field \mathbb{F} . Show that $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$ where Tr denotes the trace, which is the sum of the diagonal entries.
- 2. Let V be a finite-dimensional vector space over the field \mathbb{F} and $\varphi \in \operatorname{End}(V)$ an endomorphism. The trace $\operatorname{Tr}(\varphi)$ of φ is defined in the following way: Choose a basis \mathcal{B} of V and express φ as a matrix with respect to \mathcal{B} . Define $\operatorname{Tr}(\varphi)$ as the sum of the diagonal entries of this matrix. Show that this definition does not depend on the choice of \mathcal{B} .
- **3.** Compute the Killing form of $sl_2(\mathbb{C})$. Since $sl_2(\mathbb{C})$ is simple and thus semisimple you should get a symmetric, non-degenerate 3×3 -matrix. Compute the Killing form of $gl_2(\mathbb{C})$. Is it non-degenerate?
- 4. Take $\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \in sl_2(\mathbb{C})$ and compute its abstract Jordan decomposition. Do the same for $\begin{bmatrix} -3 & -1 \\ 4 & 1 \end{bmatrix} \in sl_2(\mathbb{C})$.