UNIVERSITY OF ST ANDREWS
 MT5827 Lie Algebras
 Tutorial Sheet 5: Chapters 5 and 6

1. Let $A, B \in \mathbb{F}^{n \times n}$ be square matrices over the field \mathbb{F}. Show that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$ where Tr denotes the trace, which is the sum of the diagonal entries.
2. Let V be a finite-dimensional vector space over the field \mathbb{F} and $\varphi \in$ $\operatorname{End}(V)$ an endomorphism. The trace $\operatorname{Tr}(\varphi)$ of φ is defined in the following way: Choose a basis \mathcal{B} of V and express φ as a matrix with respect to \mathcal{B}. Define $\operatorname{Tr}(\varphi)$ as the sum of the diagonal entries of this matrix. Show that this definition does not depend on the choice of \mathcal{B}.
3. Compute the Killing form of $\mathrm{sl}_{2}(\mathbb{C})$. Since $\mathrm{sl}_{2}(\mathbb{C})$ is simple and thus semisimple you should get a symmetric, non-degenerate 3×3-matrix. Compute the Killing form of $\mathrm{gl}_{2}(\mathbb{C})$. Is it non-degenerate?
4. Take $\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right] \in \operatorname{sl}_{2}(\mathbb{C})$ and compute its abstract Jordan decomposition.

Do the same for $\left[\begin{array}{rr}-3 & -1 \\ 4 & 1\end{array}\right] \in \operatorname{sl}_{2}(\mathbb{C})$.

