Disturbance Decoupling for Polynomial Systems - Example

Let $\mathcal{P}=\mathbb{R}\left[X_{1}, X_{2}, X_{3}, X_{4}\right]$,

$$
f=\left[\begin{array}{c}
X_{2} \\
X_{1} \\
X_{1} X_{3} \\
X_{1} X_{4}
\end{array}\right], \quad g=\left[\begin{array}{cc}
X_{4} & X_{2} X_{4} \\
1 & X_{2} \\
X_{3} & 0 \\
0 & 1
\end{array}\right], \quad d=\left[\begin{array}{c}
X_{3} \\
X_{4} \\
0 \\
0
\end{array}\right], \quad h=\left[\begin{array}{c}
X_{1} \\
X_{2}
\end{array}\right]
$$

and $\nu=2$. First, we compute Ω^{*} by Algorithm 2 and the related remark. Set

$$
W_{0}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right],
$$

then we have

$$
W_{0} \cdot g=\left[\begin{array}{cc}
X_{4} & X_{2} X_{4} \\
1 & X_{2}
\end{array}\right], \quad A_{0}=\left[-1, X_{4}\right], \quad B_{0}=\left[-1, X_{4}, 0,0\right] .
$$

Thus, $\Omega_{0}=\operatorname{im}\left(\cdot W_{0}\right)$ and $\Omega_{0} \cap \operatorname{ker}(\cdot g)=\operatorname{im}\left(\cdot B_{0}\right)$.
Further, it is

$$
\left.\begin{array}{rl}
L_{f} B_{0} & =\left[\begin{array}{lll}
X_{4}, & X_{1} X_{4}-1, & 0,
\end{array}\right] \\
L_{g_{1}} B_{0} & =\left[\begin{array}{lll}
0, & 0, & 0,
\end{array}\right] \\
L_{g_{2}} B_{0} & =\left[\begin{array}{lll}
0, & 2 X_{4}+1, & 0,
\end{array}\right. \\
X_{2}
\end{array}\right], ~ l
$$

which results in $\Omega_{0} \subsetneq \Omega_{1}=\operatorname{im}\left(\cdot W_{1}\right)$ with

$$
W_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

As above, we derive

$$
W_{1} \cdot g=\left[\begin{array}{cc}
X_{4} & X_{2} X_{4} \\
1 & X_{2} \\
0 & 1
\end{array}\right], \quad A_{0}=\left[\begin{array}{lll}
-1, & X_{4}, & 0
\end{array}\right], \quad B_{1}=B_{0}
$$

Hence, $\Omega_{2}=\Omega_{1}$ and the algorithm terminates with $\Omega^{*}=\Omega_{1}$, which means

$$
\operatorname{syz}\left(\Omega^{*}\right)=\operatorname{ker}\left(W_{1} \cdot\right)=\operatorname{im}\left(\left[\begin{array}{lll}
0, & 0, & 1,
\end{array}\right]^{T} \cdot\right)
$$

However, this implies $d \notin \operatorname{syz}\left(\Omega^{*}\right)$, by which the output is not decouplable from disturbances for the above choice of d. To answer the question whether or not the output is decouplable from disturbances for all $d \in \operatorname{syz}\left(\Omega^{*}\right)$, we use Theorem 22. For $\lambda_{1}=X_{1}, \lambda_{2}=X_{2}, \lambda_{3}=X_{4}$, we have

$$
\begin{gathered}
\Omega^{*}=\operatorname{im}\left(\cdot W_{1}\right)=\left\langle\frac{\partial}{\partial X} \lambda_{1}, \frac{\partial}{\partial X} \lambda_{2}, \frac{\partial}{\partial X} \lambda_{3}\right\rangle \\
\left\langle\frac{\partial}{\partial X} \lambda_{2}, \frac{\partial}{\partial X} \lambda_{3}\right\rangle \cap \operatorname{ker}(\cdot g)=\{0\}, \quad \frac{\partial}{\partial X} \lambda_{1}-X_{4} \cdot \frac{\partial}{\partial X} \lambda_{2} \in \operatorname{ker}(\cdot g) \text { and } \\
\operatorname{det}(A)=\operatorname{det}\left(\left[\begin{array}{cc}
L_{g_{1}} \lambda_{2} & L_{g_{2}} \lambda_{2} \\
L_{g_{1}} \lambda_{3} & L_{g_{2}} \lambda_{3}
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}
1 & X_{2} \\
0 & 1
\end{array}\right]\right)=1
\end{gathered}
$$

Thus, Ω^{*} is controlled invariant for (f, g) by the pair

$$
\beta:=\left[\begin{array}{cc}
1 & -X_{2} \\
0 & 1
\end{array}\right], \quad \alpha:=-\beta \cdot\left[\begin{array}{c}
L_{f} \lambda_{2} \\
L_{f} \lambda_{3}
\end{array}\right]=\left[\begin{array}{c}
X_{1} X_{2} X_{4}-X_{1} \\
-X_{1} X_{4}
\end{array}\right]
$$

For illustration, consider the system caused by (α, β) :

$$
f+g \alpha=\left[\begin{array}{c}
X_{2}-X_{1} X_{4} \\
0 \\
X_{1} X_{2} X_{3} X_{4} \\
0
\end{array}\right], \quad g \beta_{1}=\left[\begin{array}{c}
X_{4} \\
1 \\
X_{3} \\
0
\end{array}\right], \quad g \beta_{2}=\left[\begin{array}{c}
0 \\
0 \\
-X_{2} X_{3} \\
1
\end{array}\right]
$$

Both first components of the state x_{1}, x_{2} on which the output depends are independent of the third state component x_{3}. Thus, by the form of Ω^{*} the output is invariant under disturbances.

