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Abstract. The socle of an endomorphism algebra of a finite di-
mensional module of a finite dimensional algebra is described. The
results are applied to the modular Hecke algebra of a finite group
with a cyclic Sylow subgroup.

1. Introduction

The interplay between a module of a finite dimensional algebra A
over an algebraically closed field k and the endomorphism ring E of
this module has always been of special interest. The corresponding
Hom-functor relates the module categories of A and E. For example,
this functor realizes the Fitting correspondence between the PIMs of
A and those of E.

Our main interest is in the case where E is a modular Hecke alge-
bra. By this we mean an algebra of the form E = EndkG(IndGP (k)),
where G is a finite group, k is an algebraically closed field of charac-
teristic p, and P is a Sylow p-subgroup of G. The successful use of
the modular Hecke algebra in connection with Alperin’s Weight Con-
jecture by Cabanes in [3] is a strong motivation for further study. In
the experimental part of [9, 10], special focus was laid on the structural
meaning of the socle of a modular Hecke algebra E. It is the purpose of
this paper to throw light on some of the experimental results observed
in [9, 10]. In particular, we can now explain the outcome of the ex-
periments in case of a p-modular Hecke algebra of a finite group with
a cyclic Sylow p-subgroup (see Theorem 1.4 below). The main device
for achieving this is a convenient description of the socle of a (general)
endomorphism algebra.

Before stating our theorems, let us fix some notation and assump-
tions.

Date: May 14, 2011.
2000 Mathematics Subject Classification. 16S50, 16G10, 20C08, 20C20.
Key words and phrases. Endomorphism algebra, modular Heckle algebra, cyclic

blocks.

1
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Hypothesis 1.1. Let k be an algebraically closed field and A a finite
dimensional k-algebra. Furthermore, let Y be a finitely generated right
A-module with a decomposition

Y =
n⊕
j=1

Yj

into indecomposable direct summands. Throughout the whole paper
we assume that

(a) Yi ∼= Yj if and only if i = j,
(b) The head and socle of Y have the same composition factors (up

to isomorphism, disregarding multiplicities).

We denote the endomorphism ring EndA(Y ) of Y by E, and the co-
variant Hom-functor HomA(Y,−) by F .

Condition (a) of the above hypothesis is only introduced for conve-
nience. Without this “multiplicity freeness” one would obtain a Morita
equivalent endomorphism ring.

In the first part of this paper we describe the socle of the right regular
E-module in terms of the structure of Y . Since the Hom-functor F is
left exact, we may view F (S) as a submodule of EE for every S ≤ Y .
It is easy to see that every simple submodule of EE is isomorphic to a
submodule of F (S) for some simple S ≤ Y . Of particular interest are
thus the socles of the modules F (S) for simple A-modules S.

Theorem 1.2. Let the notation and assumptions be as in Hypothesis
1.1. Fix a simple A-submodule S ≤ Yj for some 1 ≤ j ≤ n. Two non-
zero homomorphisms of the form Yi → S for some 1 ≤ i ≤ n are called
equivalent, if they differ by an automorphism of Yi. Let KS,j denote the
set of equivalence classes of such homomorphisms.

Then there is a partial order ≤ on KS,j, such that the maximal ele-
ments of KS,j with respect to ≤ correspond to the simple submodules of
F (S).

A proof of this theorem will be given in Section 2. Under favorable
conditions one can determine the maximal elements, leading to the
following corollary.

Corollary 1.3. Let the notation and assumptions be as in Hypothesis
1.1. Suppose in addition that the head of each Yj is simple, and for each
simple module S in the head of Y , there is at most one non-projective
direct summand Yj of Y with head S.

Then the map S 7→ soc(F (S)) yields a bijection between the iso-
morphism classes of the simple A-modules in the head of Y and the
isomorphism classes of the simple submodules of EE.
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The results obtained here can be understood as a generalization of
the main results of Green in [6]. In this reference, Green assumes
Hypothesis 1.1(b), and in addition that E is self-injective. Green shows
that this latter condition forces the heads and socles of the Yj to be
simple. Moreover, the Yj are determined by their heads and socles
up to isomorpism. Green then obtains the stronger conclusion that
S 7→ F (S) yields a bijection between the isomorphism classes of the
simple A-modules in the head of Y and the isomorphism classes of all
simple E-modules.

In the second part of this paper, we apply the previous theorem to
special cases, in particular to the modular Hecke algebra of groups with
a cyclic Sylow subgroup. Our main result is contained in the following
theorem.

Theorem 1.4. Let kG be the group ring over k for a finite group G
and let P be a Sylow p-subgroup of G. Let A be a sum of blocks of kG
with cyclic defect groups. Assume one of the following conditions.

(a) G is p-solvable;
(b) |P | = p;
(c) A is the principal block.

(Thus P is cyclic in Cases (b) and (c)).
Let Y be the A-component of the permutation module IndGP (k) and

put E = EndA(Y ). Then each non-projective indecomposable direct
summand of Y is uniserial. Moreover, in Cases (b) and (c), the hy-
pothesis of Corollary 1.3 is satisfied, the PIMs of E have simple socles,
and for each simple E-module T , there are at most two non-isomorphic
PIMs of E with T as socle.

We conclude our paper with some examples demonstrating the rele-
vance of the hypotheses of Theorem 1.4 (Subsection 3.3.6).

2. The Socle of EE

Throughout this section we assume the hypothesis and notations
from 1.1. We aim at describing the socle of the right regular E-module.
Let us begin with some general considerations, thereby introducing
further notation.

Assumption (a) of Hypothesis 1.1 implies that E is a basic algebra,
i.e., each simple E-module is one-dimensional. Homomorphisms are
written and composed from the left, i.e., ϕ(y) denotes the image of
y ∈ Y under ϕ ∈ E, and ϕψ(y) = ϕ(ψ(y)) for y ∈ Y . All A-modules
are assumed to be right modules and finitely generated, unless explicitly
stated otherwise. Recall that F denotes the covariant Hom-functor
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HomA(Y,−) from the category of finitely generated right A-modules
to the category of finitely generated right E-modules.

By Fitting’s correspondence, there is a decomposition of the right
regular E-module EE into PIMs of the form EE =

⊕n
j=1 Ej with Ej :=

HomA(Y, Yj) for 1 ≤ j ≤ n.
For 1 ≤ j ≤ n we write εj ∈ E for the projection of Y onto Yj.

Then
∑n

j=1 εj = idY is a decomposition of idY into pairwise orthogonal
primitive idempotents, and we have

(1) ψ =
n∑

i,j=1

εiψεj.

for every ψ ∈ E. We identify Ej = HomA(Y, Yj) with εjE for 1 ≤ j ≤
n, and HomA(Yi, Yj) with εjEεi for 1 ≤ i, j ≤ n.

2.1. The general case. The socle of EE equals the direct sum of the
socles of the Ej. We may therefore restrict our attention to the socles
of the latter. The following lemma provides a further reduction.

Lemma 2.1. Fix 1 ≤ j ≤ n and let ϕ ∈ Ej be such that 〈ϕ〉k is a
simple submodule of Ej. Then there is some i, 1 ≤ i ≤ n, such that
ϕ = εjϕεi.

Proof. Indeed, we have ϕ =
∑n

i=1 ϕεi. Each of these summands lies in
〈ϕ〉k and the set of non-zero summands is linearly independent, so that
〈ϕ〉k = 〈ϕεi〉k for some i by the simplicity of 〈ϕ〉k. By assumption,
ϕ = εjϕ. �

Definition 2.2. (1) For any 1 ≤ j ≤ n we define an equivalence
relation ∼ on

⋃n
i=1 εjEεi as follows. Let ϕ ∈ εjEεi, ϕ′ ∈ εjEεi′ . Then

ϕ ∼ ϕ′, if and only if i = i′ and there is an automorphism ψ ∈ εiEεi
such that ϕ′ = ϕψ. The equivalence class of ϕ ∈ εjEεi is denoted by
[ϕ].

(2) Fix some 1 ≤ j ≤ n and an A-submodule 0 6= S ≤ Yj. Put

KS,j := {[ϕ] ∈
n⋃
i=1

εjEεi | ϕ 6= 0 and ϕ(Y ) ≤ S}.

For [ϕ], [ϕ′] ∈ KS,j with ϕ ∈ εjEεi, ϕ′ ∈ εjEεi′ we write [ϕ] ≤ [ϕ′], if
and only if there is ψ ∈ εiEεi′ such that ϕ′ = ϕψ.

Lemma 2.3. Let 0 6= ϕ ∈ εjEεi and ψ ∈ εiEεi be such that [ϕ] = [ϕψ].
Then ψ is an automorphism.

Proof. The assumption implies ϕ = ϕ(ψµ) for some automorphism µ.
Hence ϕ = ϕ(ψµ)l for all positive integers l. Since ϕ is non-zero and
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rad(εiEεi) is nilpotent, this implies that ψµ is an automorphism, hence
the result. �

Lemma 2.4. The relation ≤ of Definition 2.2 is a partial order on
KS,j.

Proof. Clearly, ≤ is well defined, reflexive and transitive. Let [ϕ], [ϕ′] ∈
KS,j with [ϕ] ≤ [ϕ′] and [ϕ′] ≤ [ϕ]. Using the notion of the definition,
there are ψ ∈ εiEεi′ and ψ′ ∈ εi′Eεi such that ϕ′ = ϕψ and ϕ = ϕ′ψ′.
Thus ϕ = ϕη with η = ψψ′ ∈ εiEεi. Thus η is an automorphism by
Lemma 2.3. But then ψ is an isomorphism, hence i = i′ and [ϕ′] =
[ϕψ] = [ϕ]. �

For the remainder of this section we consider the following configura-
tion. We choose 0 6= S ≤ Yj for some 1 ≤ j ≤ n. Let [ϕ] ∈ KS,j with
ϕ ∈ εjEεi for some 1 ≤ i ≤ n. The symbols S, ϕ, j and i will always
have this meaning, unless explicitly stated otherwise.

The next result provides a characterization of the maximal elements
of the sets KS,j.

Lemma 2.5. The element [ϕ] is maximal with respect to ≤, if and only
if the following condition is satisfied:

(*) If ψ ∈ εiEεl for some 1 ≤ l ≤ n with ϕψ 6= 0, then ψ is an
automorphism.

Proof. Suppose that [ϕ] is maximal with respect to ≤, and let ψ ∈ εiEεl
such that ϕ′ := ϕψ 6= 0. Then [ϕ] ≤ [ϕ′] and thus [ϕ] = [ϕ′]. In
particular, l = i and ψ ∈ εiEεi. Lemma 2.3 now implies that ψ is an
automorphism. Thus, Condition (*) holds.

Suppose that [ϕ] satisfies Condition (*) and let [ϕ′] ∈ KS,j with
[ϕ] ≤ [ϕ′]. Thus there is ψ ∈ εiEεi′ such that ϕ′ = ϕψ. In particular,
ϕψ 6= 0. By Condition (*), ψ is an automorphism, which implies
[ϕ] = [ϕ′]. Hence [ϕ] is maximal with respect to ≤. �

Although we won’t need this fact in the following, one can easily show
that each element of KS,j lies below a maximal one.

Lemma 2.6. There is some 1 ≤ l ≤ n and some ψ ∈ εiEεl such that
[ϕψ] ∈ KS,j is maximal.

Proof. Observe that if ψ ∈ εiEεl is such that [ϕ] ≤ [ϕψ] but [ϕ] 6= [ϕψ],
then ψ is contained in the Jacobson radical of E. Since the latter
is nilpotent, every increasing chain of elements of KS,j must become
stationary. �
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If an A-module can be embedded into two distinct direct summands
Yj and Yj′ of Y , the configuration we consider is “independent” of the
particular direct summand used to define it.

Lemma 2.7. Assume that S ′ ≤ Yj′ for some 1 ≤ j′ ≤ n and that
ι : S → S ′ is an isomorphism. Then

KS,j → KS′,j′ , [ϕ] 7→ [ιϕ],

is a bijection preserving maximal elements. If [ϕ] ∈ KS,j spans a sim-
ple submodule of EE, then so does [ιϕ], and the two E-modules are
isomorphic.

Proof. This is obvious. �

The following lemma characterizes the elements of KS,j which span
simple submodules of E.

Lemma 2.8. The element [ϕ] ∈ KS,j spans a simple socle constituent
of HomA(Y, S) ≤ Ej, if and only if [ϕ] is maximal.

Proof. Suppose that [ϕ] is maximal in KS,j. Since ϕ ∈ εjEεi, it suffices
to show that ϕψ ∈ 〈ϕ〉k for all ψ ∈ εiEεl and all 1 ≤ l ≤ n. Let ψ ∈
εiEεl such that ϕψ 6= 0. Then ψ is an automorphism by Lemma 2.5.
Write ψ = aεi + η with 0 6= a ∈ k and η ∈ rad(εiEεi). If ϕη were non-
zero, we would have [ϕ] = [ϕη] by the maximality of [ϕ]. This in turn
would imply that η is an automorphism by Lemma 2.3, a contradiction.
Thus ϕη = 0 and hence ϕψ = aϕ.

Now suppose that [ϕ] ∈ KS,j spans a simple submodule of Ej. Let
ϕ′ ∈ KS,j with [ϕ] ≤ [ϕ′]. Thus ϕ′ = ϕψ with ψ ∈ εiEεi′ for some
1 ≤ i′ ≤ n. Now 0 6= ϕ′ = ϕψ ∈ 〈ϕ〉k, which implies that [ϕ] = [ϕ′].
Thus [ϕ] is maximal. �

As a consequence of the lemma we note that [ϕ] = 〈ϕ〉k \ {0} if [ϕ] is
maximal. Clearly, Definition 2.2 and Lemma 2.8 prove Theorem 1.2.

Suppose that S ≤ S ′ ≤ Yj. Then KS,j ⊆ KS′,j, and the partial order
on KS′,j restricts to that of KS,j. Moreover, [ϕ] ∈ KS,j is maximal, if
and only if it is maximal in KS′,j. In particular, if [ϕ] ∈ KS,j is maximal,
it is also maximal in Kϕ(Y ),j.

Next, we determine the isomorphism types corresponding to the
maximal elements of KS,j.

Lemma 2.9. Suppose that [ϕ] ∈ KS,j is maximal. Then the simple
socle constituent 〈ϕ〉k of Ej is isomorphic to the head constituent of Ei

(recall that we assume ϕ ∈ εjEεi).
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Proof. For any 1 ≤ l ≤ n we have

HomE (εlE, 〈ϕ〉k) ∼= 〈ϕ〉kεl(2)

as k-vector spaces. Now 〈ϕ〉εl is non-trivial, if and only if l = i. In this
case, 〈ϕ〉kεi = 〈ϕ〉k. By Equation (2), the assertion is now obvious. �

We collect the main results of this section in the following corollary.

Corollary 2.10. (a) Fix some 1 ≤ j ≤ n and a submodule S ≤ Yj.
Then there is a bijection between the simple submodules of F (S) and
the maximal elements of KS,j.

(b) Suppose that Yj is projective and that S = soc(Yj) ∼= hd(Yj).
Then KS,j has a unique maximal element [ϕ] with ϕ ∈ HomA(Yj, S) ≤
F (S). Moreover, the head and the socle of Ej are simple and isomor-
phic to each other.

Proof. (a) This is obvious by Lemmas 2.1 and 2.8.
(b) Let ϕ ∈ εjEεj denote the epimorphism of Yj onto S. Then [ϕ]

is the unique maximal element of KS,j by our assumptions on Yj. Let
〈ψ〉k ≤ Ej be a simple submodule. By Lemma 2.1, we may assume
that ψ ∈ εjEεi for some 1 ≤ i ≤ n. Let M be the image of ψ in Yj.
Note, that M ≤ Yj has S as socle, so that there is a homomorphism
ϕ̃ : Yj → S ≤M .

By the projectivity of Yj, there is a homomorphism η : Yj → Yi, such
that ψη = ϕ̃. Since 〈ψ〉k is an E-submodule we have 〈ϕ〉k = 〈ϕ̃〉k =
〈ψη〉k = 〈ψ〉k. �

The following lemma shows that, in order to describe the isomorphism
types of the socle constituents of E, it suffices to determine the socles
of the E-modules F (S) for the simple submodules S of the Yj.

Lemma 2.11. Fix 1 ≤ i, l ≤ n. Let ψ ∈ εlEεi be such that 〈ψ〉k is a
simple submodule of El. Then there is a simple submodule S of Yj for
some 1 ≤ j ≤ n and an element ϕ ∈ εjEεi, such that ϕ(Yi) = S and
〈ψ〉k ∼= 〈ϕ〉k as E-modules.

Proof. Put M := ψ(Yi) and let S ′ denote a simple quotient of M .
Thus S ′ is isomorphic to a head constituent of Y , and hence there is
some 1 ≤ j ≤ n and a simple submodule S of Yj isomorphic to S ′. Let
ι denote a non-zero map M → S and put ϕ := ιψ. Then 〈ϕ〉k is a
simple submodule of Ej isomorphic to 〈ψ〉k. �

Example 2.12. (Naehrig, [9]) An example for the situation in Lemma
2.11 can be found in the permutation module IndGP (k) for G = S7 and
P a Sylow 2-subgroup of G, where k has characteristic 2.
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The module IndGP (k) has three indecomposable direct summands
which belong to the non-principal kG-block. These modules are unis-
erial and of dimensions 6, 20, and 28, respectively. In what follows,
we will denote modules by their dimension, e.g., 6 denotes a module of
dimension 6. The ascending composition series are given as follows.

6 : 6

20 : 6,8,6

28 : 8,6,6,8,

where 6 and 8 are simple. Then (with a slightly simplified notation)

K6 = {ϕ1 : 6→ 6, ϕ2 : 20→ 6}
and

K8 = {ψ : 28→ 8 ≤ 28}.
We immediately see that [ϕ2] and [ψ] are the maximal elements of K6

and K8, respectively. By Lemma 2.8, there are two isomorphism types
of socle constituents of the corresponding E-PIMs F (6), F (20), and
F (28). Our analysis shows that soc(F (6)) = 〈ϕ2〉k and soc(F (28)) =
〈ψ〉k are simple, while soc(F (20)) ∼= 〈ϕ2, ψ〉k. In fact, the socle con-
stituent of F (20), which is isomorphic to 〈ψ〉k, is spanned by a homo-
morphism η : 28→ 20 with image 14.

We finally discuss an equivalence relation on the PIMs Ej (and hence
on the Yj) introduced in the third author’s PhD-thesis. Let us recall
the definition.

Definition 2.13. ([10, Remark 4.1]) Let ∼ denote the transitive clo-
sure of the relation on {E1, . . . ,En} defined by Ei ∼ Ej, if and only
if soc(Ei) and soc(Ej) have a common irreducible constituent (up to
isomorphism).

By Lemmas 2.9 and 2.8, Ei ∼ Ej if and only if there is an l, 1 ≤ l ≤ n,
submodules S ≤ Yi and T ≤ Yj, and surjective maps ϕ : Yl → S,
ψ : Yl → T , such that [ϕ] ∈ KS,i and [ψ] ∈ KT,j are maximal.

2.2. Special cases. To discuss some special cases of our main result,
we introduce some more notation. Put

H := {S | S is a simple constituent of hd(Y )}/ ∼=
and

SE := {T | T is a simple constituent of soc(EE)}/ ∼= .
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Corollary 2.14. Assume that one of the following conditions is satis-
fied.

(a) For 1 ≤ j ≤ n, the head of Yj is simple, and for each S ∈ H, there
is at most one non-projective direct summand Yj of Y with head S.

(b) The algebra A is symmetric, and for each simple module S ≤
hd(Y ), the projective cover of S is isomorphic to one of the Yj.

Then there is a bijection H → SE induced by the functor soc◦F (i.e.,
soc(F (S)) is simple for S ∈ H, determined by S up to isomorphism,
and every socle constituent of EE is isomorphic to one of these).

Proof. Let S ∈ H. We may assume that S ≤ Yj for some 1 ≤ j ≤ n.
By assumption and Corollary 2.10(b), KS,j contains a unique maximal
element. By Part (a) of this corollary, the socle of F (S) is simple.
Suppose that S ′ ≤ Yj′ is simple and S 6∼= S ′. Then the maximal
elements in KS,j and KS′,j′ arise from different direct summands of Y .
Lemma 2.9 implies that soc(F (S)) 6∼= soc(F (S ′)). Thus the given map
is injective. It is also surjective, since by Lemma 2.11, every element
of SE is isomorphic to soc(F (S)) for some S ∈ H. �

Note that Corollary 1.3 is just Part (a) of Corollary 2.14. We note one
further consequence.

Corollary 2.15. Suppose that hd(Yj) is multiplicity free for all 1 ≤
j ≤ n. Then soc(F (S)) is multiplicity free for all simple submodules
S ≤ Y .

Proof. This is immediate by Corollary 2.10(a) and Lemma 2.9. �

Under the restrictive assumptions of Corollary 2.14(a), the relation ≤
has another interpretation.

Lemma 2.16. Assume that each indecomposable direct summand of
Y has a simple head. Then there is a partial order ≤ on the set
{Y1, . . . , Yn} given by:

Yi ≤ Yi′ if and only if

there is a surjection ψ : Yi′ → Yi.

Let S ≤ Yj be simple and let [ϕ], [ϕ′] ∈ KS,j with ϕ ∈ εjEεi and
ϕ′ ∈ εjEεi′. Then Yi ≤ Yi′ if and only if [ϕ] ≤ [ϕ′].

3. Groups with a cyclic Sylow subgroup

In this second part of our paper we apply the previous results to the
modular Hecke algebra E of a group with a cyclic Sylow p-subgroup.
In particular, we are able to explain the computational results of [9] in
this case. There, the third author found that in all computed examples,
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the PIMs of E had simple socles. Moreover, the number of PIMs with
the same socle (up to isomorphism) was at most two.

The main difficulty here is to describe the indecomposable direct
summands of the permutation module on the cosets of a Sylow sub-
group. Using Green correspondence, one can reduce this problem to
the centralizer of a subgroup of order p. This is a p-nilpotent group
under our assumptions. We are thus lead to study this question for
p-nilpotent groups. This is done in general, without assuming that a
Sylow p-subgroup is cyclic, in Subsection 3.2. In particular, we give a
description of the modular Hecke algebra in a general p-nilpotent group
(see Proposition 3.2). To keep our exposition as elementary as possible,
we avoid reference to the machinery of nilpotent blocks.

3.1. Preliminaries. Throughout this section, G denotes a finite group
and k an algebraically closed field of characteristic p. All kG-modules
are right kG-modules and of finite dimension, unless explicitly stated
otherwise. As in Section 2, we write and compose maps from the left.
Let V be a kG-module. We view Endk(V ) as a kG-module in the usual
way, i.e., ϕg(v) := ϕ(vg−1)g, for ϕ ∈ Endk(V ), v ∈ V , g ∈ G. There
is a natural isomorphism Endk(V ) ∼= V ∗ ⊗k V as right kG-modules,
where G acts diagonally on V ∗⊗k V . This sends λ⊗v with λ ∈ V ∗ and
v ∈ V to the map ϕλ,v given by ϕλ,v(w) = vλ(w), w ∈ V . For a ∈ kG
we write ρa ∈ Endk(V ) for right multiplication with a on V . If V is
a left kG-module, λa ∈ Endk(V ) denotes the left multiplication with
a ∈ kG.

If A is a G-algebra over k, we write, as usual, AG for the set of
G-fixed points of A.

For a =
∑

g∈G sgg ∈ kG, we write a′ :=
∑

g∈G sgg
−1. Thus ′ : kG→

kG, a 7→ a is an anti-isomorphism of kG.

3.2. The p-nilpotent case. We begin by investigating the modular
Hecke algebra of a p-nilpotent group, not necessarily with a cyclic Sy-
low p-subgroup. Thus assume that G is p-nilpotent, i.e., G = PM with
M = Op′(G) E G being a normal p-complement. Let ε be a centrally
primitive idempotent of kM . If ε is invariant under the conjugation ac-
tion of P on kM , then so is the homogeneous component εkM = εkMε,
and εkG is the unique block of kG covering εkM . The action of P on
εkM gives εkM the structure of a kG-module. Also, EndkM(εkM) is
invariant under the action of P on Endk(εkM). Let V ≤ εkM be a
simple, P -invariant kM -submodule of εkM .

For further reference, we collect a few obvious and well-known, but
helpful results.
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Lemma 3.1. Assume that ε is P -invariant. Then the following state-
ments hold:

(a)
εkMε→ EndkM(εkM), a 7→ λa,

is a P -equivariant k-algebra isomorphism. In particular

(εkMε)P ∼= EndkG(εkM).

(b) The “twisted” structural homomorphism

(3) Θ : εkMε→ Endk(V ), a→ ρa′ ,

is a P -equivariant k-algebra isomorphism. In particular,

(εkMε)P ∼= EndkP (V ),

and thus
EndkG(εkM) ∼= EndkP (V ).

(c) As a kP -module, V is an endopermutation module.

Proof. Parts (a) and (b) are clear. The surjectivity of Θ follows from
the fact that V is an absolutely simple kM -module.

(c) The map Θ in (3) is an isomorphism of kP -modules, so that
V ∗ ⊗k V ∼= εkM as kP -modules. Since εkM is a direct summand of
a permutation kP -module, it is itself a permutation kP -module. Thus
ResP (V ) is an endopermutation module. �

If ε is not P -invariant, we consider the stabilizer Q of ε in P and ap-
ply the lemma to QM . Then induction yields a Morita equivalence
between the block εkQM and the kG-block covering εkM (see [2, The-
orem 6.4.1]).

Recall that we are interested in IndGP (k). The structure of this per-
mutation module is revealed in the following proposition.

Proposition 3.2. We have IndGP (k) ∼= kM with P acting by conjuga-
tion and M by right multiplication.

Choose a set of representatives ε1, . . . , εs for the P -orbits on the cen-
trally primitive idempotents of kM . Write Qi for the stabilizer of εi
in P , and let Vi be a simple kQiM-submodule of εikM , 1 ≤ i ≤ s.
Then

IndGP (k) ∼=
s⊕
i=1

IndGQiM
(εikM)

and

EndkG(IndGP (k)) ∼=
s⊕
i=1

EndkG(IndGQiM
(εikM)).
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Moreover,

EndkG(IndGQiM
(εikM)) ∼= EndkQi

(ResQiM
Qi

(Vi))

for 1 ≤ i ≤ s.

Proof. The first assertion is clear. Fix i, 1 ≤ i ≤ s, and let ε denote the
sum of the centrally primitive idempotents in the P -orbit of εi. Then
εkM ∼= IndGQiM

(εikM) as kG-modules. Also,

EndkG(IndGQiM
(εikM)) ∼= EndkQiM(εikM) ∼= EndkQi

(ResQiM
Qi

(Vi)),

the first isomorphism arising from [2, Theorem 6.4.1], and the second
from Lemma 3.1(b). Finally, the assertion about EndkG(IndGP (k)) fol-
lows from the fact that the direct summands IndGQiM

(εikM) of IndGP (k)
lie in distinct blocks of kG. �

Thus in order to study

EndkG(IndGP (k))

in the p-nilpotent group G, we have to investigate the endomorphism
rings EndkQi

(ResQiM
Qi

(Vi)).

3.3. Groups with a cyclic Sylow p-subgroup. We now assume that
a Sylow subgroup P of G is cyclic of order pn > 1. For 0 ≤ i ≤ n we
writeDi for the unique subgroup of P of order pi, and putN := NG(D1)
and C := CG(D1).

3.3.1. The structure of C and N . The following lemma restricts the
structure of C and of N .

Lemma 3.3. Assume that Op(G) 6= 1. Then C is p-nilpotent, G = N
and G/C is cyclic of order dividing p−1. In particular, G is p-solvable.

Proof. Notice that D1 is the unique subgroup of order p in any p-
subgroup of G containing D1. Since 1 6= Op(G) ≤ P , it follows that
D1 is contained in Op(G) and hence is normal in G. In particular, D1

is the unique subgroup of G of order p and G = N . Since C E G and
|G/C| | p− 1, it suffices to prove the first assertion.

Now p does not divide |C ′∩Z(G)| by a well known transfer argument
(see e.g., [7, Theorem (5.6)]). Hence D1 is not contained in C ′ and
thus C ′ is a p′-group. The result follows. �
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3.3.2. The p-nilpotent case. We first aim at investigating the situation
in C. Thus assume in addition that G is p-nilpotent, i.e., G = PM
with M = Op′(G) being a normal p-complement.

Every p-block of kG has a unique simple module, and since P is
cyclic, every indecomposable module in such a block is uniserial and
uniquely determined by its composition factor V and its composition
length `. We write J(`, V ) for such an indecomposable kG-module,
using a similar convention for subgroups of G.

Lemma 3.4. Let V be a simple G-invariant kM-module and let ε
denote the centrally primitive idempotent of kM corresponding to V .
Then ε is G-invariant and we may use the notation of Section 3.2.

Suppose that

ResGP (V ) = J(`1, k)⊕ J(`2, k)⊕ . . .⊕ J(`r, k)

with positive integers `i, 1 ≤ i ≤ r. Then

εkM ∼= J(`1, V )⊕ J(`2, V )⊕ . . .⊕ J(`r, V )

as a kG-module.

Proof. By Lemma 3.1(b), we have EndkG(εkM) ∼= EndkP (V ). The
isomorphism induces a bijection π 7→ π′ between the centrally prim-
itive idempotents of EndkG(εkM) and those of EndkP (V ), such that
πEndkG(εkM)π ∼= π′EndkP (V )π′. The dimension of πEndkG(εkM)π
equals the composition length of the direct summand πεM of εM .
This implies the result. �

By Lemma 3.1(d), the module ResGP (V ) is an endopermutation kP -
module. Thus every indecomposable direct summand of ResGP (V ) is an
endopermutation module as well. The indecomposable endopermuta-
tion modules of a cyclic p-group are classified (see [12, Exercise (28.3)]).

Since the dimension of V is prime to p, the vertex of V equals P .
Let S denote a source of V . Thus S | ResGP (V ) and V | IndGP (S). In
particular, S is an indecomposable endopermutation kP -module with
vertex P . Moreover,

ResGP (V ) | ResGP (IndGP (S)).

By Mackey’s theorem, the indecomposable summands of ResGP (V ) are
of the form IndPP g∩P (T ), where g ∈ G and T is an indecomposable
summand of ResPP g∩P (S).
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3.3.3. The situation in N . Now assume that G has a normal sub-
group C such that G/C is cyclic of order dividing p − 1 and that
C = PM is p-nilpotent.

Lemma 3.5. Let V be simple kC-module, and let W = J(`, V ) be a
uniserial kC-module of composition length ` ≤ pn (for the notation see
Subsection 3.3.2). Write H for the inertia group of V in G, and put
e := |H :C|.

Since |G/C| is prime to p, IndGC(V ) is semisimple,

IndGC(V ) = V1 ⊕ . . .⊕ Ve
with pairwise non-isomorphic simple kG-modules Vi. Moreover,

IndGC(W ) ∼= V1,` ⊕ . . .⊕ Ve,`,
where Vi,` denotes the indecomposable kG-module with head isomorphic
to Vi and composition length `.

Proof. This is just an application of Clifford theory. �

Notice that the indecomposable direct summands of IndGC(W ) form an
orbit under the square of the Heller operator Ω2 of kG.

3.3.4. The general case. From the preceding considerations we obtain
information about the indecomposable direct summands of IndGP (k) in
a block of kG. Let B be block of kG with defect group 1 6= Q ≤ P ,
and let b denote the Brauer correspondent of B in N . We also choose
a block c of kC covered by b. An indecomposable direct summand
of IndGP (k) lying in B will be called a B-component of IndGP (k); an
analogous notation is used for the blocks b and c. The indecompos-
able b-modules and c-modules are uniserial, and we write `(U) for the
composition length of an indecomposable b-module. The Green corre-
spondence between the indecomposable modules of B and those of b
is denoted by f .

Proposition 3.6. Let V be the simple c-module and let S be the source
of V . Then S is an indecomposable endopermutation kQ-module with
vertex Q and trivial D1-action, and the following statements hold for
any non-projective B-component U of IndGP (k).

(a) If U has vertex R ≤ Q, then `(f(U)) = |Q :R|`(T ), where T is

an indecomposable direct summand of ResQR(S).
(b) Ω2(U) is a B-component of IndGP (k).
(c) If B is the principal block, then `(f(U)) = 1.

Proof. Clearly, V and hence S have vertex Q, since Q is a defect group
of c. Also, D1 acts trivially on V , hence also on S.
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We have IndGP (k) ∼= IndGN
(
IndNP (k)

)
, and f sets up a vertex pre-

serving one-to-one correspondence between the non-projective B-com-
ponents of IndGP (k) and the non-projective b-components of IndNP (k).
Hence f(U) is a b-component of IndNP (k) ∼= IndNC

(
IndCP (k)

)
. It follows

that there is a c-component W of IndCP (k) such that f(U) | IndNC (W ).
By Lemma 3.5 and the subsequent remark, `(f(U)) = `(W ) and

Ω2(f(U)) | IndNC (W ). Since the Green correspondence commutes with
the Heller operator, the latter proves (b).

Write M := Op′(C). By Proposition 3.2 and Lemma 3.4, applied
to QM , the number `(W ) equals the length of an indecomposable direct

summand of ResQMQ (V ′), where V ′ is a simple submodule of ResCQM(V ).
Clearly S is a source of V ′, and hence (a) follows from the considerations
after Lemma 3.4.

Finally, if B is the principal block, then Q = P and V is the trivial
module. This implies `(f(U)) = 1. �

3.3.5. The proof of Theorem 1.4. Let A be as in Theorem 1.4 and let B
be a block of A. If G is p-solvable, the Brauer tree of B is a star with
its exceptional node at the center (see [4, Lemma X.4.1]). This implies
that any B-module is uniserial, and we are done.

Suppose then that |P | = p or that B is the principal block. If U
is a non-projective indecomposable summand of Y contained in B, we
have `(f(U)) = 1 by Proposition 3.6. By [1, Lemma 22.3], this implies
that U is uniserial, thus proving the first claim of Theorem 1.4.

Let us now turn to the proof of the remaining assertions of the the-
orem. By replacing E by its basic algebra, we may assume that Y sat-
isfies Hypothesis 1.1(a). The second part of this hypothesis is clearly
satisfied by IndGP (k) and hence by Y . In Cases (b) and (c), the inde-
composable direct summands of Y are either projective or of maximal
vertex with a simple Green correspondent (see Proposition 3.6). In par-
ticular, the hypothesis of Corollary 1.3 is satisfied. Fix j, 1 ≤ j ≤ n.
If Yj is projective, then Ej has a simple socle by Corollary 2.10(b).
Suppose that Yj is not projective. Then Yj is uniserial, and the com-
position factors of Yj, from top to bottom, arise from a cyclic walk
around a vertex of the Brauer tree of the block containing Yj (see [1,
Theorem 22.1, Lemma 22.3]).

Let ϕ ∈ εjEεi for some 1 ≤ i ≤ n be such that [ϕ] ∈ KS,j is maximal,
where S := ϕ(Y ) ≤ Yj. We claim that S is simple. If not, let S0 and S1

denote the socle and the head of S, respectively. Suppose first that Yi
is projective. Let Yl denote the indecomposable direct summand of Y
which is in the Ω2-orbit of Yj and which has socle S1 (such a direct
summand exists by Proposition 3.6(c)). Then there is an embedding
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ψ : Yl → Yi such that ψ(Yl) 6≤ ker(ϕ). Indeed, the multiplicity of S0

as a composition factor of Yi is equal to the multiplicity of S0 as a
composition factor of Yl. Thus ϕψ 6= 0, contradicting the maximality
of [ϕ]. Finally, suppose that Yi is not projective. Then there is an
1 ≤ l ≤ n and a homomorphism ψ : Yl → Yi with ψ(Yl) = rad(Yi).
Again, ϕψ 6= 0, a contradiction.

We have thus proved that S is simple, which implies S = soc(Yj). It
now follows from Lemma 2.16 and the fact that there is at most one
non-projective direct summand of Y with a given head, that KS,j has
a unique maximal element, and thus soc(Ej) is simple. The last asser-
tion follows from the fact that there are at most two non-isomorphic
indecomposable direct summands of Y with isomorphic socles.

3.3.6. Some examples. In order to describe the modular Hecke alge-
bra E = EndkG(IndGP (k)) in case P is cyclic, we have to determine
the B-components of IndGP (k) for the blocks B of kG. By Lemma 3.5
and Proposition 3.6, this can be done locally, i.e. inside the p-nilpotent
group C = CG(P ). Mazza has shown in [8], that all indecomposable
endopermutation kP -modules occur as sources of simple modules in
p-nilpotent groups with Sylow subgroup P . But by Lemma 3.4, apart
from the sources, we have to take into account all indecomposable sum-
mands of the restrictions of the simple kC-modules to P .

Let us use Mazza’s construction to consider two specific examples.
Let P denote the cyclic group of order 72. Then P acts on a group M of
order 133 ·973, the direct product of two extraspecial groups. By [8, 4.1,
Theorem 5.3], the semidirect product PM has a simple module V of
dimension 13·97 such that ResPMP (V ) = (J(6, k)⊕J(7, k))⊗(J(48, k)⊕
J(49, k)) ∼= J(42, k)⊕J(43, k)⊕J(49, k)24. (The indecomposable direct
summands of these tensor products can be computed with [11].)

Next, let P denote the cyclic group of order 172, and let q = 577 =
2 · 172 − 1. By Mazza’s construction, we get an action of P on the
extraspecial q-group M1 of order q3 and exponent q in such a way that
the semidirect product PM1 has a representation V1 of dimension 577
and ResPM1

P (V1) = J(172 − 1, k) ⊕ J(172, k). Now let M2 denote the
extraspecial group 28+1

− of minus type and order 512. Its automorphism
group is an extension of an elementary abelian group of order 256 by the
orthogonal group O−(8, 2) (see [13, Theorem 1]). Let Q denote a Sy-
low 17-subgroup of Aut(M2). A computation with GAP (see [5]) shows
that Q has exactly two fixed points in its action on M2 by conjugation.
There is a simple kM2-module V2 of dimension 16, unique up to isomor-
phism. Letting P act on M2 via the projection P → Q, we find that V2

extends to a kPM2-module, also denoted by V2. Since P has exactly one
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fixed point on V ∗2 ⊗k V2, we have ResPM2
P (V2) = J(16, k). Combining,

we obtain an action of P on M := M1×M2, and a simple kPM -module
V = V1⊗k V2 such that ResPMP (V ) = J(273, k)⊕ J(172, k)31. Thus the
corresponding 17-block of PM contains a unique non-projective direct
summand of IndPMP (k), namely J(273, V ).

It is at least feasible, though not very likely, that there is a non-
17-solvable group G such that PM = CG(D1)/D1, where D1 is the

subgroup of order 17 of a cyclic defect group P̂ of order 173 of a block B
of G, whose Brauer tree is a straight line with 4 edges, say. Then, by the
results of this section, the non-projective B-component Y of IndG

P̂
(k)

would consist of a direct sum of four indecomposable modules whose
Brauer correspondents all have length 273. In this case, the heads of
these modules would not be simple. Moreover, by the results of our
first section, the Hom-functor F corresponding to E = EndkG(Y ) would
not have the property that F (S) has a simple socle for all simple A-
modules S. Such a hypothetical configuration could presumably only
be ruled with the help of the classification of the finite simple groups.
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