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Abstract

We know that almost all Brauer trees are shaped like a star. Given such a

star and an odd prime l, we give an explicit method for constructing infinitely

many groups with this star as the Brauer tree of some l-block. Furthermore we

show, that there is an infinite family of Brauer trees which cannot be realized

in the principal block of any group.

1 Introduction

W. Feit showed in his paper [Fei84], that every Brauer tree is similar to an ‘unfolded’
Brauer tree of a covering group of a finite simple group. Feit calls two Brauer trees
similar if both are unfoldings of a third Brauer tree around its exceptional vertex.
Moreover he proved using the classification of the finite simple groups, that a Brauer
tree of a covering group of a finite simple group either has at most 248 edges or is a
straight line. On the one hand, in [FS90],[FS84],[FS82] P. Fong and B. Srinivasan
analysed Brauer trees for a given prime l in classical groups and showed that they
are straight lines with the exceptional vertex sitting on a position depending on the
chosen parameters. On the other hand we know that the alternating groups have
straight lines as Brauer trees, too. Hence ‘most’ Brauer trees are unfolded straight
lines, i.e. stars as in Figure 1.
In this paper we investigate the class of star shaped Brauer trees. Before we for-
mulate our main results, we give a precise definition.

Definition 1.1 Let s be a nonnegative integer and t, f be positive integers. A star
shaped Brauer tree Ss,t,f as in Figure 1 is a tree with f rays with s edges and f
rays with t edges, on the understanding that there are only f rays with t edges if
s = 0. If f > 1, the exceptional character, if it exists, is located in the center of
this star. If f = 1, we assume that an exceptional character exists and that s edges
are on one side and t edges are on the other side of the exceptional vertex. We call
Ss,t,1 a basic tree.

Given any star as in Figure 1 we give methods for constructing groups with this
star as a Brauer tree. To be more precise we prove the following.

Theorem 1 Let l be an odd prime. Let s be a nonnegative integer and let δ, t, f
be positve integers, such that ef | l − 1, where e := s+ t. Then there are infinitely
many groups having a cyclic l-block of defect δ with Brauer tree Ss,t,f .
More specifically, we have the following.
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2 1 INTRODUCTION

Figure 1: Ss,t,f

(a) If s = 0, hence e = t, there are infinitely many primes p such that the principal
l-block of GLe(p

f ) o 〈σ〉 has a cyclic block of defect δ and has Brauer tree
S0,e,f . Here, σ denotes the field automorphism of order f acting on GLe(p

f ).

(b) If s, t are positive and if e := s+ t is odd, there are infinitely many primes p
and a positive integer n such that GUn(p

f ′)o〈σ〉 has a cyclic l-block of defect
δ with Brauer tree Ss,t,f . Here we let

f ′ :=

{

f, if f is odd,
f/2, if f is even,

and σ be the field automorphism of order f acting on GUn(p
f ′) .

(c) If s, t are positive and if e := s + t is even, then there are infinitely many
primes p and a positive integer m such that G2m(pf )o 〈σ〉 has a cyclic l-block
of defect δ with Brauer tree Ss,t,f . Here G2m(pf ) denotes one of the groups
Sp2m(pf ), SO+2m(pf ) or SO−2m(pf ) and σ the field autmorphism of order f
acting on G2m(pf ).

In each case the star Ss,t,f is the planar embedded Brauer tree of the block.

After this constructive part we turn to the question whether every Brauer tree is
realizable in the principal block of some group. We show that it suffices to answer
this question for simple groups. Theorem 2 gives an infinite family of Brauer trees
which do not occur in any principal l-block.

Theorem 2 With the notation of Theorem 1, let s, t be positive integers with
s 6= t and s+ t > 248. Then Ss,t,f is not the Brauer tree of any principal l-block.

By reducing the assertion of Theorem 2 to finite simple groups, we need the clas-
sification for its proof. Since we do not know the shape of the Brauer trees of the
principal blocks of E7(q) and E8(q), we can only use the fact, that the number of
edges is less than 249 in these cases. This is the reason for restricting the class of
Brauer trees in Theorem 2. In fact, as we will see in Section 6, there are only a few
exceptions, where a principal l-block is an irregularly shaped star with less than
249 edges.
In Section 2 we ensure the existence of suitable primes needed as characteristics of
fields in subsequent chapters. In Sections 3, 4 and 5 we construct groups having an
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l-block with the desired Brauer tree. The question whether there are possible Brauer
trees, which cannot be realized in the principal block of some group is analysed in
Section 6. First we prove that it suffices to consider Brauer trees of simple groups
and then examine the Brauer trees of the principal blocks of simple groups.

2 Primes and More

In Sections 3, 4 and 5 we will examine classical groups over finite fields whose
characteristic must satisfy several conditions. Here we show that such primes exist
and that there are infinitely many of them. Throughout this paper we fix an odd
prime l and let x denote the residue class of x in Z/lZ for x ∈ Z and |x|l the order
of x in Z/lZ, if l - x. We further denote the l-adic valuation by νl.

Proposition 2.1 Let l be an odd prime, and let δ, k be positive integers such that
k | l − 1. Then there are infinitely many primes p satisfying

lδ | pk − 1,

lδ+1 - pk − 1, (1)

l - pi − 1 for 1 ≤ i ≤ k − 1.

Proof: Let a′ ∈ Z be such that |a′|l = k. If νl((a
′)k − 1) = 1, we set a′′ := a′. Else

we put a′′ := a′ + l and observe that |a′′|l = k and l2 - (a′′)k − 1. By [HupBla82,

La 8.1], νl(a
k − 1) = δ with a := (a′′)l

δ−1

. We apply Dirichlet’s Theorem ([Has64,
p.176]) to lδ+1 and a, and find infinitely many k0 in N such that a + k0l

δ+1 are
primes which satisfy (1). ¥

3 The Regularly Shaped Star

3.1 The Basic Tree

With the notation of the Main Theorem we let s = 0, i.e., e = t, and f be a positive
integer such that ef | l − 1. We apply Proposition 2.1 to k = ef , fix one of the
primes and denote it by p. Hence,

l | pef − 1 and l - pi − 1 for all 1 ≤ i ≤ ef − 1. (2)

Put q := pf and denote the general linear group GLe(q) by G. Further let T0 ≤ G
be a Coxeter torus (see [Hup67, p.187]) and D0 ≤ T0 be the Sylow l-subgroup of
T0. Then D0 is also a Sylow l-subgroup of G.

Lemma 3.1 We have NG(D0) = NG(T0) and CG(T0) = T0 = CG(D0).

Proof: For the first two equalities see [Hup67, pp. 187, Satz 7.3]. Let t0 ∈ T0 with
〈t0〉 = T0. Then the eigenvalues of t0 (in an algebraic closure Fq of Fq) are a, a

q, . . . ,

aq
e−1

, where a is a generator of F∗qe . For a suitable r ∈ N let z0 := tr0 ∈ D0 be an

element of order l. Then the eigenvalues of z0 are ar, arq, . . . , arq
e−1

. Because of
assumption (2) these eigenvalues are pairwise distinct. It follows that any element
in GLe(Fq) which commutes with z0 also commutes with t0. Since CG(t0) = T0 the
claim follows. ¥

By the Schur-Zassenhaus Theorem we have CG(D0) = T0 = D0 × L £ NG(D0).
Fix the principal block of CG(D0) which has D0 as a defect group and consider its
canonical character 1D0

⊗ 1L. This character corresponds uniquely to the principal
block b0 of NG(D0) by Theorem [Alp93, Thm. 15.1(5)]. By Brauer’s First Main
Theorem b0 corresponds to the principal block of G (with defect group D0). From
[FS84] we know that the Brauer tree of the principal block of G is of the form
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j j j }

e edges

with the exceptional vertex at one end. To obtain the star S0,e,f , it remains to
unfold the basic tree by extending G.

3.2 Unfolding the Basic Tree

Let σ : G −→ G, [gij ] 7→ [gpij ] be the restricted Frobenius automorphism of G and

let Ĝ := Go 〈σ〉. Note that |Ĝ| = |G| · f , hence D0 is a Sylow l-subgroup of Ĝ. We
examine what happens to the centralizer and normalizer of D0 when extending G.

Lemma 3.2 Let D0, T0 be as above.

(a) We have CĜ(D0) = T0.

(b) We have |NĜ(D0) : NG(D0)| = f.

Proof:
(a) Let t0 ∈ T0 be a generator of D0, z0 := tr0 ∈ D0 be an element of order

l with eigenvalues ar, arq, . . . , arq
e−1

for a generator a of F ∗qe . Let g ∈ G

and 0 ≤ i ≤ f − 1. Then (g, σi) ∈ Ĝ centralizes (z0, 1) if and only if
σi(z0) = g−1z0g.
Assume (g, σi) with i > 0 centralizes z0. On the one hand g−1z0g has the

same eigenvalues as z0. On the other hand, σi(z0) has eigenvalues arp
i

,

(arp
i

)q, . . . , (arp
i

)q
e−1

. Hence ar = (arp
i

)q
k0

and l | pi+fk0 − 1 for some
0 ≤ k0 ≤ e− 1, which contradicts (2). Thus the assumption is wrong.

(b) Let N := NG(D0) and N̂ := NĜ(D0). By the Frattini argument we have

Ĝ = GN̂ , hence Ĝ/G = GN̂/G ∼= N̂/(G ∩ N̂) = N̂/N. As Ĝ/G is cyclic of
order f we get the assertion. ¥

As 1D0
⊗ 1L is invariant in NĜ(D0) the inertia index of the principal block of Ĝ is

eĜ = |TN
Ĝ
(D0)(1D0

⊗ 1L) : CĜ(D0)| = |NĜ(D0) : CĜ(D0)| = fe.

Hence the Brauer tree of the principal block of Ĝ has the desired number of edges.
From [Fei84, La 3.2] we know that the basic tree opens at the exceptional vertex
while expanding G to Ĝ.

4 The Irregularly Shaped Star I

Throughout this section we let l be an odd prime and s, t, f be positive integers
such that s+ t =: e is odd and ef | l − 1. Put

f ′ :=

{

f, if f is odd,
f/2, if f is even.

Note that 2ef ′ | l − 1. We then apply Proposition 2.1 to k = 2ef ′, fix one of the
primes and denote it by p. Hence,

l | p2ef
′

− 1 and l - pi − 1 for all 1 ≤ i ≤ 2ef ′ − 1. (3)

We put q := pf
′

and denote by Gn := GUn(q) the general unitary group over Fq2 ,
i.e., the matrix group Gn := {x ∈ GLn(q

2) | xxtr = En}, where x is the matrix
obtained by raising each entry to its qth power. By condition (3), we have l | qe+1
and l - qj + 1 for 1 ≤ j ≤ e − 1. Hence, | − q|l = e and |q|l = 2e and by [FS90,
Sec.2], l is unitary for Gn.
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4.1 Theoretical Background

Let us first recall some background information which will be of great use later.

Definition 4.1 Let m be a positive integer.

(a) A partition of m is a finite sequence λ := (a1, . . . , ak) ∈ Nk
0 such that ai ≤ ai+1

and
∑k

i=1 ai = m. In this case we write λ ` m. Two partitions are equivalent
if their nonzero entries are equal.

(b) Let X = {x1, . . . , xl} ⊂ N0 with x1 < . . . < xl and let λ ` m be a partition.
Then X is a β-set of λ, if there is an equivalent partition λ′ = (a′1, . . . , a

′
l)

such that xi := a′i + (i− 1) for all 1 ≤ i ≤ l.

(c) Let X ⊂ N0 be finite and let d be a nonnegtaive integer. For d 6= 0, the d-shift
of X is the set {0, 1, . . . , d− 1} ∪ {x+ d | x ∈ X} and for d = 0 it is X itself.
Two β-sets are equivalent if one set is a d-shift of the other for some d ∈ N0.

(d) A hook ν of a β-set X is a pair (y, x) ∈ N20 such that 0 ≤ y < x and y 6∈
X,x ∈ X. The length of such a hook is r := x− y and ν is then an r-hook.

(e) Let λ ` m be a partition, X a β-set for λ and ν = (y, x) an r-hook. We obtain
a set X1 := {y}∪X \{x} by removing ν. Analogously X is obtained from X1

by adding ν. Note that X1 is a β-set for a partition λ1 ` m − r. Removing
r-hooks as often as possible from X will result in a unique β-set after a finite
number of steps, whose corresponding partition is called the r-core of λ.

(f) For r ∈ N consider an r-abacus consisting of r strings, numbered from left to
right by 0, 1, . . . , r−1 and from top to bottom by 0, 1, . . . A position on string
i and row w is numbered by i + wr. For a partition λ and a β-set X for λ
we obtain the corresponding abacus by putting a bead on string i and row t
(0 ≤ i ≤ r − 1, w ∈ N0) if and only if i + wr is an element of X. Note that
removing or adding the r-hook (y, x) from X means to shuffle up or down the
bead belonging to x to the (free) position above or below, respectively. The
lowest bead on a string is called index bead.

In our situation we need to consider unipotent blocks and their unipotent characters,
which are analysed in [Lu77] or [Lu84].

Theorem 4.2 Let l be unitary for Gm and let e := | − q|l.

(a) The unipotent characters of Gn are parametrized by the partitions of n. We
write χλ for the unipotent character which is parametrized by λ ` n.

(b) Let χλ, χµ be unipotent characters. Then χλ and χµ lie in the same block if
and only if λ and χ have the same e-core.

Proof: See [FS82]. ¥

Lemma 4.3 Let e be odd and 1 ≤ s ≤ (e − 1)/2. Then there is a positive integer
n and an e-core κ ` n− e such that the corresponding e-abacus has a bead on each
position of the first row, s even and t := e − s odd index beads. Moreover κ is a
2-core.

Proof: Note that two positions, one below the other, are of different parity. First
put a bead on each position of the first row. Then put beads on strings 0 to 2s+1 on
the second row. Further put beads only on odd positions of the remaining strings of
the second row. Hence we get the desired number of odd and even index beads. ¥
Let x1 < . . . < xk denote the beads in the above theorem. Then κ `

∑r
i=0 i =: n−e,

with r = (e− (2s+ 1))/2, hence n− e is of the form r(r + 1)/2.
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Theorem 4.4 Let Bκ be a unipotent block of Gn with cyclic defect group and cor-
responding e-core κ ` n− e. Let X = {x1, . . . , xk} be a β-set for κ and consider the
resulting e-abacus of X. We assume that there is at least one bead on each string,
otherwise we consider an equivalent β-set. The index beads ρ1, . . . ρe will be ordered
such that ρ1 > . . . > ρe. The partitions λρi obtained by adding the hook (ρi, ρi + e)
to κ for 1 ≤ i ≤ e label the non-exceptional characters of Bκ.

Proof: [FS90, p.10]. ¥

Theorem 4.5 Let Gn, Bκ, ρ1, . . . , ρe and λρi , 1 ≤ i ≤ e be as in Theorem 4.4.
Denote the subsequence of the even index beads in (ρ1, . . . , ρe) by (σ1, . . . , σs) and
the subsequence of the odd (remaining) beads by (τ1, . . . , τt). We obtain two types
of partitions in Theorem 4.4:

• λσ1
, . . . , λσs (bead σi was shuffled down for 1 ≤ i ≤ s),

• λτ1 , . . . , λτt (bead τj was shuffled down for 1 ≤ j ≤ t).

Then the Brauer tree of Bκ is a basic tree of the following shape with the exceptional
character between χσs and χτt :

j j j } j j j

χσ1
χσ2

χσs χτt χτ1 χτ2

Proof: [FS90, p.21] ¥

The preceeding theorem helps us finding a group with a block having Ss,t,f as
Brauer tree.

4.2 The Basic Tree

Let n, κ be as in Lemma 4.3. We proceed to show that Bκ has a cyclic defect group.

Lemma 4.6 Let m be odd. Then there is a cyclic irreducible subgroup in Gm of
order qm + 1, a Coxeter torus of Gm. Further, each cyclic irreducible subgroup of
Gm has order dividing q

m + 1.

Proof: [Hup70, p.149]. ¥

If m is even, then there is no cyclic irreducible subgroup in Gm, and we see the
reason for distinguishing between e odd and even.
By (3) a Sylow l-subgroup of a maximal irreducible subgroup T ≤ Ge is also a
Sylow l-subgroup of Ge. In particular the block Bκ has a cyclic defect group by
[CaEn94].
For the remainder of this section let us fix a Coxeter torus T0 of Ge and the Sylow
l-subgroup D0 ≤ T0. By [Hup67, p.165] we see that there is a Coxeter torus T1 of
GLe(q

2) with T0 ≤ T1.

Lemma 4.7 Let Ge and T0 be as above.

(a) We have CGe
(T0) = T0 and CGn

(T0) = T0 ×Gn−e.

(b) We have NGn
(T0) = NGe

(T0)×Gn−e, where NGe
(T0) is a cyclic extension of

T0 of order e.

(c) We have CGn
(D0) = T0 ×Gn−e = CGn

(T0).

(d) We have NGn
(D0) = NGn

(T0).



4.3 Unfolding the Basic Tree 7

Proof:

(a) We have T0 = T1 ∩ Ge, hence with the assumptions (3) the first assertion
follows analogously to Lemma 3.1. As all eigenvalues of a generator t of T0
differ from 1, the second assertion follows by direct calculation of xt and tx
for x ∈ CGLn(q2)(T0).

(b) Let x ∈ NGLn(q2)(T0) and 1 ≤ r ≤ qe+1 with gcd(qe+1, r) = 1 and tx = xtr.
Analogously to (a) we get the first equation. For the second see [Ca85, Prop.
3.3.6, La. 3.6.5].

(c) Analogous to (a) and Lemma 3.1.

(d) With relations (3) we follow the proof of Theorem 7.3(1) in [Hup67]. ¥

By [Ca85, Sec. 13.7], Gn−e has a unique cuspidal character χκ since n − e =
r(r + 1)/2. Similar to the end of subsection 3.1 we find the canonical character
1T0

⊗ χκ of Bκ, whose Brauer tree is a basic tree.

4.3 Unfolding the Basic Tree

We now consider an extension of Gn of suitable degree and analyse the correspond-
ing extensions of the blocks and their defect groups under consideration. Obviously
the restricted Frobenius automorphism α := α|Fq2 acts on Gn. Let

α′ :=

{

α2, if f = f ′ is odd
α, if f = 2f ′ is even.

Then |Ĝn| = |Gn| · f and l - f . As Ge and Gn−e are invariant under α′, there
exists g0 ∈ Ge such that g0(α

′(T0))g
−1
0 = T0. Put σ := (g0, α

′). Then Ĝn = Gn〈σ〉.
Moreover T0, D0, Ge, Gn−e, CGe

(D0) and NGe
(D0) are invariant under σ.

Lemma 4.8 We have CĜn
(D0) = CGn

(D0) = CGe
(D0)×Gn−e.

Proof: Analogous to Lemma 3.1 with (3). ¥

By [Alp93, Thm. 1(5)] there is a unique block B̂ of Ĝn covering Bκ with B̂ =

(Bκ)
Ĝn .

Lemma 4.9 The cuspidal character χκ is invariant under σ|Gn−e
.

Proof: We only need to show the assertion for α′′ := α′|Gn−e
. Since the Deligne-

Lusztig varieties (see [Ca85, Sec. 7.7]) are permuted by α′′, we have by [Ca85, Prop.
7.1.5, Thm. 7.7.11]

R
Gn−e

Tw,1
((α′′)−1g) = R

Gn−e

Tw,1
(g) for all g ∈ Gn−e,

hence α′′ permutes unipotent characters of Gn−e (see [Ca85, Sec.12]). Furthermore,
there is an α′′-stable (B,N)-pair such that for all Levi subgroups L of Gn−e

α′′
(

R
Gn−e

L (χκ)
)

= R
Gn−e

L

(

α′′(χκ)
)

,

which is 0 by the cuspidality of χκ. By the uniqueness of χκ, the claim follows. ¥
We analyse the inertia index of 1T0

⊗ χκ:

Lemma 4.10 We have TN
Ĝn
(D0)(1T0

⊗ χκ) = NĜn
(D0).
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Proof: SinceD0 is invariant under σ, NĜn
(D0) = 〈NGn

(D0), σ〉. Moreover 1T0
⊗χκ

is invariant in NGn
(D0) and χκ under σ by Lemma 4.9. ¥

Hence the number of edges of the Brauer tree of Ĝn is

|TN
Ĝn
(D0)(1T0

⊗ χκ) : CĜn
(D0)| = f · e.

By [Fei84, La. 3.2, La. 4.3], this Brauer tree is an f -fold unfolding of the basic tree
around its exceptional vertex.

Remark 4.11 The tree in Figure 1 is the planar embedded Brauer tree of the
unipotent block B̂: Assume the planar embedding is not as in Figure 1. Then there
are two rays of length s sitting next to each other. Let the labelling of the edges of
the Brauer trees be as in Figure 2 and Figure 3.

Figure 2: Brauer tree of Bκ

Figure 3: Brauer tree of B̂

By [Alp93, Sec. 17] we can deduce the exact structure of the projective indecom-
posable modules corresponding to the simple modules from the Brauer tree. In
particular we know that under the above assumption

S11
S21

is indecomposable as an B̂-module. However, the Brauer tree of Bκ indicates that
the restriction of this module to Gn decomposes as a direct sum S1 ⊕ S1. This is a
contradiction by [HupBla82, Thm. 7.20], as the degree f of the extension does not
divide l.

5 The Irregularly Shaped Star II

Throughout this section let s 6= t, f be positive integers such that s+ t =: 2e′ =: e
is even and ef | l − 1. We apply Proposition 2.1 to k = ef , fix one of the (odd)
primes and denote it by p. Hence,

l | pef − 1 and l - pi − 1 for all 1 ≤ i ≤ ef − 1. (4)
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We put q := pf and denote the m×m matrix which has 1 on the anti-diagonal and
0 everywhere else by Jm. Fix some a ∈ Fq such that X2 +X + a is irreducible in
Fq[X] and put

J̃2m =

[

0 Jm
−Jm 0

]

J̃∗2m =









Jm−1
2 1
1 2a

Jm−1









.

By G2m we then mean one of the following matrix groups:

• The symplectic group Sp2m(q) = {g ∈ GL2m(q) | gtJ̃2mg = J̃2m}.

• The special orthogonal group SO+2m(q) = {g ∈ GL2m(q) | gtJ2mg = J2m}.

• The special orthogonal group SO−2m(q) = {g ∈ GL2m(q) | gtJ̃∗2mg = J̃∗2m}.

5.1 Notation and Theoretical Background

Definition 5.1 (Compare [FS90]) (a) A symbol Λ = {X,Y } consists of an
unordered pair of sets X and Y of nonnegative integers. If X = Y , then Λ is
degenerate. Two symbols Λ = {X1, Y1} and Λ2 = {X2, Y2} are equivalent if
there is d ∈ N such that

X2 = [0, d− 1] ∪ (X1 + d) and Y2 = [0, d− 1] ∪ (Y1 + d)

or X1 = [0, d− 1] ∪ (X2 + d) and Y1 = [0, d− 1] ∪ (Y2 + d).

We denote the equivalence class containing Λ by [Λ].

(b) The defect of a symbol Λ = {X,Y } is defined by def(Λ) =
∣

∣|X| − |Y |
∣

∣, and
the rank of Λ = {X,Y } is given by

rk(Λ) =
∑

x∈X

x+
∑

y∈Y

y −
⌊ ( |X|+ |Y | − 1

2

)2⌋

.

(c) A cohook ν of a symbol Λ = {X,Y } is a pair (y, x) ∈ N20 with 0 ≤ y < x and

y 6∈ Y and x ∈ X

or y 6∈ X and x ∈ Y.

Then x− y =: k is called the length of ν which is then called a k-cohook. The
symbol Λ′ obtained from deleting x from X (resp. Y ) and adding y to Y (resp.
X) is said to be obtained from Λ by removing ν. The e′-cocore Λ∞ of X is
the unique symbol obtained by deleting e′-cohooks as often as possible. If Λ
is degenerate and Λ 6= Λ∞, both copies of Λ∞ are considered as the e′-cocore
of Λ (see [FS90]).

Definition 5.2 Let Λ = {X,Y } be a symbol and e′ be a positive integer. By
an e-abacus we mean an abacus with e = 2e′ strings numbered from left to right
by 0l, . . . , (e

′ − 1)l, 0r, . . . , (e
′ − 1)r and from top to bottom by 0, 1, . . . With Λ

we associate an abacus diagram, called the e-unitary diagram, obtained as follows:
For a positive integer t we put a bead on the il-th string of row number t if t is
even and if i+ te′ =: x′ is an element of X or if t is odd and x′ is an element of Y .
Analogously we put a bead on string ir and row number t if t is even and i+te′ = x′

is an element of Y or if t is odd and x′ is an element of X. In these cases we say
the bead has number x′l and x

′
r, respectively. The bead sticking last on its string is

called index-bead.
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Note that removing an e′-cohook ν = (y, x) from a symbol Λ means pushing the
bead x up to the (free) position y lying above x.
By ([Ca85, Sec. 13.8]) we have for a positive integer m̃:

Remark 5.3 The unipotent characters of Sp2m̃(q) are parametrized by equivalence
classes of symbols of rank m̃ and odd defect.
The unipotent characters of SO+2m̃(q) are parametrized by equivalence classes of
symbols of rank m̃ and defect divisible by 4.
The unipotent characters of SO−2m̃(q) are parametrized by equivalence classes of
symbols of rank m̃ and defect congruent to 2 modulo 4. ¥

In what follows we need to take results from the theory of Deligne-Lusztig (see also
[Ca85, Sec. 13.7, 13.8]).

Theorem 5.4 Let m̃ be a positive integer and χΛ be a unipotent character parametrized
by the symbol Λ. Then χΛ is cuspidal if and only if

(a) for G2m̃(q) = Sp2m̃(q), it is equivalent to
{

{0, 1, . . . , 2r}, {}
}

for some positive
integer r (and m̃ = r2 + r),

(b) for G2m̃(q) = SOε(q) (ε = ±1), it is equivalent to
{

{0, 1, . . . , 2r − 1}, {}
}

for some positive integer r (and m̃ = r2 with r odd if ε = −1, and r even
otherwise).

In these cases the cuspidal character is unique.

Lemma 5.5 Let s 6= t be positive integers with 0 < t < e′ and s + t = 2e′.
Then there is a symbol Λ = {X,Y }, such that the corresponding e-unitary diagram
has a fully occupied first row, s index-beads corresponding to X and t index-beads
corresponding to Y .

Proof: We start with beads for X and Y at string 0l and 0r, respectively.
Put a bead on each position of the first row. Then for each e′ ≤ i ≤ (e′− 1− t) put
a bead on each position ir. Then there are no beads on row number 1 at t positions
within the right part of the abacus. ¥

Given s, t, we let for the rest of this chapter Λ = {X,Y } be as in Lemma 5.5 with
|X| > |Y | and label its index-beads such that σ1 > σ2 > · · · > σs correspond to X
and τ1 > τ2 · ·· > τt correspond to Y . We put m := rk(Λ)+e′. Considering Remark
5.3 we fix Sp2m(q), if def(Λ) is odd, SO+2m(q) if def(Λ) is divisible by 4 or SO−2m(q)
if def(Λ) is even and not divisible by 4. Note, that the corresponding subgroup
Sp2(m−e′)(q), SO

+
2(m−e′)(q) or SO

−
2(m−e′)(q) has a cuspidal unipotent character by

Theorem 5.4. By condition (4) we observe that |pf |l = 2e′ =: e and | − pf |l =
e′. Hence, by [FS82], l is unitary for G2m and the cyclic unipotent l-blocks of
G2m are parametrized by e′-cocores Λ. Assume BΛ to be a cyclic unipotent block
parametrized by Λ. By [FS90] we have:

Theorem 5.6 The symbols Λσi and Λτj obtained from Λ by adding the cohooks
(σi, σi + e′) and (τj , τj + e′), 1 ≤ i ≤ s and 1 ≤ j ≤ t label the non-exceptional
characters of BΛ, denoted by χσi and χτj , respectively. Then s = e′+def(Λ) and t =
e′ − def(Λ). The Brauer tree of BΛ is of the following shape with the exceptional
character between χσs and χτt :

j j j } j j j

χσ1
χσ2

χσs χτt χτ1 χτ2

As this Brauer tree is the basic tree we first need to ensure that the symbol Λ exists
for all choices of s and t with s+ t = 2e′.
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5.2 The Basic Tree

We need to analyse the structure of the occurring defect groups. Let the notation
be as in the last section.

Lemma 5.7 Let m̃ > ẽ be positive integers.

(a) There is a subgroup of Sp2m̃(q) of the form Sp2ẽ(q)× Sp2(m̃−ẽ)(q). Moreover
there is an irreducible cyclic subgroup of Sp2m̃(q) of order qm̃ + 1 and each
irreducible cyclic subgroup of Sp2m̃(q) has an order dividing qm̃ + 1.

(b) There is a subgroup of SO−2m̃(q) of the form SO−2ẽ(q)×SO
+
2(m̃−ẽ)(q). Moreover

there is an irreducible cyclic subgroup of SO−2m̃(q) of order qm̃ + 1 and each
irreducible cyclic subgroup of SO−2m̃(q) has a order dividing qm̃ + 1.

(c) There is a subgroup of SO+2m̃(q) which is isomorphic to SO−2ẽ(q)× SOε
2(m̃−ẽ)

for ε ∈ {+,−}.

Proof: See [Hup70]. ¥

Given s, t, let Λ,m and e′ be as in the last subsection. Then we denote the subgroups
of G2m introduced above by G2e′ , G2(m−e′) and G2e′ × G2(m−e′). Fix a cyclic
irreducible subgroup T0 in G2e′ and the Sylow l-subgroup D0 of T0 which is, by
condition (4), also a Sylow l-subgroup of G2e′ . By Theorem 4.4(ii) in [CaEn94], a
Sylow l-subgroup of G2e′ is a defect group for the unipotent block BΛ. In particular
BΛ has T0 as defect group.

Lemma 5.8 (a) We have CG2e′
(T0) = T0 and CG2m

(T0) = T0 × G2(m−e′) =
CG2m

(D0),

(b) NG2m
(T0) = NG2e′

(T0)×G2(m−e′) = T oC2e′ ×G2(m−e′), with a cyclic group
C2e′ of order 2e

′ and

(c) NG2m
(D0) = NG2m

(T0).

Proof: Analogously to Lemma 4.7 we get (a), (b), (d) and the first part of (c). For
the second part of (c) compare [Ca85, Prop. 3.3.6] and [Ca85, Cor. 3.6.5]. ¥

5.3 Unfolding the Basic Tree

We now consider extensions of the occurring groups. Let BΛ, T0, D0 and χΛ be as
above. Obviously the restricted Frobenius automorphism α := ᾱ|Fq acts on Sp2m(q)

and SO+2m(q). It remains to define a suitable action on SO−2m(q).

Remark 5.9 Let V be a 2m-dimensional vector space over Fq with quadratic form
Q of Witt index m − 1 such that SO−2m(q) is isomorphic to the corresponding
orthogonal group. Let the polynomial X2 + X + a ∈ Fq[X] be irreducible and
(v1, . . . , vm, v

′
m, . . . , v

′
1) := (ṽ1, . . . , ṽ2m) be a basis of V such that

Q(

2m
∑

i=1

xiṽi) =

m−1
∑

i=1

xix2m+1−i + x2m + xmxm+1 + ax2m+1.

Then, for 0 ≤ r ≤ f , X2+X+αi(a) ∈ Fq[X] is irreducible, too. Thus the following
quadratic forms Qr are isometric to Q:

Qr(

2m
∑

i=1

xiṽi) =

m−1
∑

i=1

xix2m+1−ix
2
m + xmxm+1 + α−r(a)x2m+1.
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Hence, for each 0 ≤ r ≤ f , there is an automorphism ψr ∈ Aut(V ) corresponding
to the isometry between (V,Q) and (V,Qr). Then α′ := (α,ψ1) acts on SO−2m(q)
by mapping [gi,j ]1≤i,j≤2m ∈ SO

−
2m(q) to

α′([gij ]1≤i,j≤2m) = α(ψ([gij ]1≤i,j≤2m)).

Let the notation be as above. We use α(∗) to denote α and α′ depending on which
group G2m is considered. Put

Ĝ2m := G2m o 〈α(∗)〉.

Then |Ĝ2m : G2m| = |α(∗)| = f , which is not divisible by l. As α(∗)(T0) ≤ G2e′ is
again a Coxeter torus, we find g0 ∈ G2e′ such that g0(α

(∗)(T0))g
−1
0 = T0. Put σ :=

(g0, α
(∗)) ∈ Ĝ2m. Then Ĝ2m = G2m〈σ〉. Then T0, D0, G2m, G2(m−e′)(q), CG2m

(D0)
and NG2m

(D0) are invariant under σ.
With the relations (4) we have CĜ2m

(D0) = CG2m
(D0) = T0×G2(m−e′). By [Alp93,

Thm. 15.1(5)], there is exactly one block B̂ of Ĝ2m which covers BΛ with B̂ =

(BΛ)
Ĝ2m . The same argumentation as in Lemma 4.9 shows that, χΛ is invariant

under σ|G2(m−e′)
. It remains to analyse the inertia group of the canonical character

to determine the number of edges of the Brauer tree.

Lemma 5.10 We have TN
Ĝ2m

(D0)(1T0
⊗ χΛ) = NĜ2m

(D0).

Proof: As NG2m
(D0) is invariant under σ we have NĜ2m

(D0) = 〈NG2m
(D0), σ〉.

Moreover 1T0
⊗ χΛ is invariant under σ and under NG2m

(D0). ¥

Hence the inertia index is |TN
Ĝ2m

(D0)(λ0) : CĜ2m
(D0)| = f ·2e′ and the block under

consideration has 2e′f = ef edges. By [Fei84, La. 3.2] we have Ss,t,f as Brauer

tree for B̂. By the same arguments as in Remark 4.11, this Brauer tree is also the
planar embedding.

6 Brauer Trees in Principal Blocks

In this section we discuss the question whether there are Brauer trees which cannot
be realized in the principal block of any group. Indeed we find in Theorem 2 an
infinite family of Brauer trees which do not occur in the principal block of any group.
To reduce the assertion of Theorem 2 to simple groups, we need the following lemma.

Lemma 6.1 Let G be a group with a cyclic Sylow l-subgroup and with Ol′(G) = {1}.

(a) The product S over all minimal normal subgroups of G is simple with l | |S|.

(b) G is solvable or satisfies S ≤ G ≤ Aut(S).

Proof:

(a) Assume that M1 6= M2 are minimal normal subgroups of G. Then l | |M1|
and l | |M2|, since Ol′(G) = {1}. Consider subgroups Ti ≤ Mi of order l
for i = 1, 2. As G has a cyclic Sylow l-subgroup, there a is g ∈ G with
g−1T1g = T2. Since M1 is normal, M1 ∩M2 6= {1}, which is a contradiction
to the minimality of Mi. Hence there is a unique minimal normal subgroup
S, which is simple since it has a cyclic Sylow l-subgroup.

(b) Let C := CG(S). If S is abelian, it is cyclic of order l. Let [C,C] denote the
commutator of C. By [Isa94, Cor 5.6], S ∩ [C,C] = {1}. As S is the unique
minimal normal subgroup, we have [C,C] = {1}, hence C is abelian. As G/C
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embeds into Aut(S) ∼= Cl−1, it follows that G is solvable. If S is non-abelian,
then C ∩ S = {1}. As C is a normal subgroup of G, we have C = {1} by the
minimality and uniqueness of S as a minimal normal subgroup of G. Hence,
S ≤ G = NG(S) ≤ Aut(S). Note that in this case, l - |G : S| by [Ga52]. ¥

The previous lemma provides the reduction to prove Theorem 2.
Proof of Theorem 2: We show that most irregularly shaped stars do not occur as
Brauer trees of principal blocks of any group. Let G be an arbitrary group. Since
we consider the principal block, we may assume that Ol′(G) = {1}. Note that if
Ss,t,f and Ss′,t′,f ′ are similar stars with s < t and s′ < t′, then s = s′ and t = t′. If
G is solvable then the Brauer tree is a regularly shaped star with one edge on each
ray. Thus it cannot be similar to an irregularly shaped star. By Lemma 6.1, we
henceforth may assume that S ≤ G ≤ Aut(G) for some non-abelian simple group S.
It therefore suffices to prove the Theorem for non-abelian simple groups by [Fei84,
La. 4.3]. We consider these in turn.

(a) An for n ≥ 5: If An has a cyclic Sylow l-subgroup, the Brauer tree of the
principal block is a straight line with the exceptional vertex sitting on one
end (see [Ja78]).

(b) Groups of Lie type:

• PSLn(q), n ≥ 2, n 6= (2, 2), (2, 3): If l | q, we only need to consider n = 2
and q = l. In this case the principal block of PSL2(l) is isomorphic to the
principal block of SL2(l), which is a basic tree for a regularly shaped star
by [Alp93, Chap.V, p.123]. If l | q − 1, we only need to consider n = 2.
From [Bu76] we know, that in this case the Brauer tree of the principal
block of PSL2(q) is a basic tree for a regularly shaped star. It remains
to consider the case l - q and l - q − 1. As above, the principal l-block
of PSLn(q) is isomorphic to the principal block of SLn(q). By [Fei84]
the principal block of SLn(q) is in this case similar to the principal block
of GLn(q), which in turn has a basic tree for a regularly shaped star by
[FS84].

• PSUn(q
2), n ≥ 3, (n, q) 6= (3, 2): The same argumentation as in case

PSLn(q) shows, that we may consider GUn(q
2), and the results in Sec-

tion 4 complete the proof in this case.

• PSpn(q), n ≥ 2, n 6= (2, 2): Let the l-Sylow sugroups of PSpn(q) be
cyclic. As |Z(Spn(q))| = gcd(2, q − 1), we may apply the results of
Section 5, unless l = 2. But in this case all occurring Brauer trees only
have one edge.

• Ω2m+1(q), n ≥ 3, q odd: We may consider GO2m+1(q) and apply the
results of Section 5, we may assume l to be odd.

• Ω+2m(q),Ω−2m(q), n ≥ 4. Assume l to be odd. Then we may consider
GO+2m(q) and GO−2m(q), respectively, and apply the results of Section 5.

• E6(q): This group has a basic tree for an irregularly shaped star with
parameters (s, t, f) = (2, 6, f) with 8f | l−1 and l | q4+1 in its principal
block by [HiLueMal95].

• E7(q), E8(q): The Brauer trees of those groups have less than 249 edges
(see [Fei84]).

• F4(q): This group provides no basic tree for an irregularly shaped star
in the principal block by [HiLue98].

• 3D4(q
3): There is one basic tree for a star with parameters (s, t, f) =

(1, 3, f) with f | l−1 and 4l | q4− q2+1 in its principal block by [Ge90].
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• 2E6(q
2): This group has a basic tree for an irregularly shaped star with

(s, t, f) = (1, 4, f) with 5f | l−1 and l | q4+q3+q2+q+1 in its principal
block by [HiLue98].

• G2(q),
2B2(q

2),2 F4(q
2),2G2(q

2): There are no exceptions by [Hi90].

(c) Sporadic groups: By [HiLux89] there are only two principal l-blocks with
Brauer trees Ss,t,f : In J1 for l = 19 the Brauer tree equals S1,5,1 and in J4
for l = 31, the Brauer tree equals S3,7,1
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