Vorkurs zur linearen Algebra

1. Übungsblatt

Aufgabe 1. (Mengen) Es seien $A := \underline{6} - \{5\}$, $B := \{1, 2, 4, 4, 1, 2, 1\}$, $C := \{x \in \mathbb{N} \mid x \text{ ist ungerade und } x \leq 8\}$. Berechnen Sie

- 1. |A|, |B|, |C|.
- 2. $A \cup B$, $A \cup C$, $B \cup C$ und $A \cup B \cup C$.
- 3. $A \cap B$, $A \cap C$, $B \cap C$ und $A \cap B \cap C$.
- 4. A B, B A, B C, C B.
- 5. Es sei $D := A \cap C$. Berechnen Sie $B \times D$ und $(D \times B) (B \times D)$.

Aufgabe 2. (Potenzmenge) Berechnen Sie die Mengen $Pot(\emptyset)$, $Pot(Pot(\emptyset))$ sowie $Pot(Pot(Pot(\emptyset)))$.

Aufgabe 3. (Binomialkoeffizient und Teilmengen) Es seien $n, k \in \mathbb{N}$ mit $0 \le k \le n$. Zeigen Sie $\binom{n}{n-k} = \binom{n}{k}$.

Listen Sie alle zweielementigen Teilmengen von 4 auf.

Aufgabe 4. (Summen- und Produktzeichen) Es sei I eine endliche Menge und zu jedem $i \in I$ ein $a_i \in \mathbb{R}$ gegeben. Wir definieren die folgenden Schreibweisen.

$$\sum_{i \in \emptyset} a_i := 0, \ \sum_{i \in I} a_i := a_j + \sum_{i \in I - \{j\}} a_i$$

Wir nennen \sum das Summenzeichen. Die Bezeichnung des Indizes i ist frei wählbar, es ist also $\sum_{i\in I}a_i=\sum_{j\in I}a_j$.

Mit dem Summenzeichen lassen sich Summen kompakt notieren. Es ist zum Beispiel

$$\sum_{i \in \underline{4}} i = 1 + 2 + 3 + 4 = 10, \quad \sum_{i \in \{1,3,5\}} i^2 = 1 + 9 + 25 = 35.$$

Die folgenden Kurzschreibweisen sind üblich:

$$\sum_{i \text{ erfüllt eine Eigenschaft } X} a_i := \sum_{i \in \{x \mid x \text{ erfüllt } X\}} a_i,$$

sowie

$$\sum_{k=\ell}^{n} a_k := \sum_{\ell \le k \le n} a_k.$$

Zum Beispiel ist $\sum_{k=1}^4 \frac{1}{k} = \sum_{1 \le j \le 4} \frac{1}{j} = \sum_{\ell \in \underline{4}} \frac{1}{\ell} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{25}{12}$ und $\sum_{2 \le j \le 5} 2^j = 2^2 + 2^3 + 2^4 + 2^5 = 60$.

Genauso definiert man (mit analogen Konventionen und Kurzschreibweisen) das Produktzeichen Π :

$$\prod_{i \in \emptyset} a_i := 1, \ \prod_{i \in I} a_i := a_j \cdot \prod_{i \in I - \{j\}} a_i$$

Berechnen Sie

1.
$$\sum_{\ell=1}^{4} \ell$$
, $\sum_{\ell=1}^{400} 3$ und $\sum_{\substack{i \in \underline{\mathbf{7}} \\ i \text{ ungerade}}} \frac{1}{i}$.

2.
$$\prod_{1 \le n \le 5} n^2$$
, $\prod_{i=1}^6 \frac{i+1}{i}$ und $\prod_{k=0}^{100} (k-50)^2$.

3.
$$\sum_{k=3}^{0} k \text{ und } \sum_{j=0}^{3} {3 \choose j}$$
.

Zusatzaufgabe 5. (Teilmengen) Seien A und B Mengen. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

(i)
$$A \cap B = A$$
 (ii) $A \cup B = B$ (iii) $A \subseteq B$.

Hinweis: Um (i) \Leftrightarrow (ii) \Leftrightarrow (iii) zu zeigen, genügt es, (i) \Rightarrow (ii) \Rightarrow (ii) \Rightarrow (i) zu zeigen.