Vorkurs zur linearen Algebra

3. Übungsblatt

Aufgabe 11. (Abbildungen) Zählen Sie alle injektiven Abbildungen $\underline{3} \to \underline{4}$ und alle bijektiven Abbildungen $\underline{4} \to \underline{4}$.

Aufgabe 12. (Relationen) Geben Sie auf $\{1, 2, 3, 4\}$ Relationen an, die

- a) reflexiv, aber nicht transitiv und nicht symmetrisch,
- b) transitiv, aber nicht reflexiv und nicht symmetrisch,
- c) symmetrisch, aber nicht reflexiv und nicht transitiv sind.

Aufgabe 13. (Äquivalenzrelationen und Vertretersysteme) Zeigen Sie, dass

$$(a,b) \sim (c,d) :\Leftrightarrow a-c = b-d$$

eine Äquivalenzrelation auf $\mathbb{Z} \times \mathbb{Z}$ ist und bestimmen Sie ein Vertretersystem.

Aufgabe 14. (Äquivalenzrelationen) Zeigen Sie, dass

 $f\sim g:\Leftrightarrow f$ unterscheidet sich von g an höchstens endlich vielen Stellen eine Äquivalenzrelation auf $\mathbb{R}^\mathbb{R}$ ist.

Aufgabe 15. (Relationen) Es sei M eine Menge und \sim eine Relation darauf. Wir behaupten, dass \sim reflexiv ist, falls \sim transitiv und symmetrisch ist. Nehmen Sie Stellung zum folgenden Beweis dieser Aussage:

Wir betrachten $(a,b) \in \sim$. Da \sim symmetrisch ist, ist dann auch $(b,a) \in \sim$. Aus der Transitivität von \sim folgt dann auch $(a,a) \in \sim$, was die Reflexivität beweist.