
Lattices
Voronoi’s algorithm

Minimal Classes
Maximal finite subgroups

Minimal Classes and maximal Subgroups

Oliver Braun

Lehrstuhl D für Mathematik
RWTH Aachen University

September 3, 2013

Oliver Braun Minimal Classes and maximal Subgroups



Lattices
Voronoi’s algorithm

Minimal Classes
Maximal finite subgroups

Contents

1 Lattices

2 Voronoi’s algorithm

3 Minimal Classes
Definitions
Calculation

4 Maximal finite subgroups
Results

Oliver Braun Minimal Classes and maximal Subgroups



Lattices
Voronoi’s algorithm

Minimal Classes
Maximal finite subgroups

Notation

K imaginary quadratic number field

OK ring of integers of K

C`K ideal class group of K , |C`K | =: hK

{a1, ..., ahK } set of representatives of the ideal classes, chosen
to be integral and of minimal norm

Hn set of Hermitian n × n-matrices

H+
n cone of positive definite Hermitian matrices

A ∈ H+
n , x ∈ Kn: A[x ] := xAx∗
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Definition

An OK -lattice L in Kn is a finitely generated OK -submodule s.t.
L⊗OK

K ∼= Kn.

Theorem (Steinitz)

1 There are fractional ideals b1, ..., bn of K s.t. L ∼=
⊕n

i=1 bi .

2 St(L) := [b1 · ... · bn] ∈ C`K , Steinitz class of L.

3 Two lattices L, M are isomorphic iff St(L) = St(M).

Remark

a⊕ b ∼= OK ⊕ ab =⇒ On−1
K ⊕ a, a ∈ {a1, ..., ahK } is a set of

representatives of the isomorphism classes of n-dimensional
OK -lattices.
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L = On−1
K ⊕ a

Lemma

EndOK
(L) ∼=


a

O(n−1)×(n−1)
K

...
a

a−1 ... a−1 OK



Theorem

GL(L) := (EndOK
(L))∗ = {A ∈ EndOK

(L) | det(A) ∈ O∗K}.

Problem

For which lattices L1, L2 do we have GL(L1) ∼= GL(L2)?
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Partial Answer

St(L1) ∈ Gal(L/K ) St(L2) C`nK =⇒ GL(L1) ∼= GL(L2)

General strategy

Determine a set of representatives of conjugacy classes of
maximal finite subgroups.

Use Voronoi’s algorithm and “minimal classes” - find maximal
finite subgroups as stabilizers of a suitable group action
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L := On−1
K ⊕ a, A ∈ H+

n

Definition: Minimum and Perfection

(x1, ..., xn) ∈ L: ax := x1OK + ...+ xn−1OK + xna
−1 ⊆ OK ,

N(ax) = |OK/ax |

minL(A) := min06=x∈L
A[x]
N(ax )

SL(A) :=
{

x ∈ L | A[x]
N(ax ) = minL(A), ax ∈ {a1, ..., ahK }

}
A is called perfect w.r.t L iff 〈x∗x | x ∈ SL(A)〉R = Hn

Theorem (G. Voronoi (1908), P. Humbert (1949))

Up to the natural action of GL(L) and multiplication by R>0 there
are only finitely many perfect A ∈ H+

n .
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Determining these finitely many perfect forms:

Definition: Voronoi-cone

VL(A) :=

 ∑
x∈SL(A)

λxx∗x | λx ∈ R≥0


Now calculate all facets and “neighbors” of VL(A).

Definition: Neighbor / contiguous form

A ∈ H+
n perfect, S facet of VL(A), R facet vector, i.e.

Trace(RS) = 0 ∀ S ∈ S, Trace(RT ) ≥ 0 ∀ T ∈ VL(A).

∃!ρ > 0, s.t. A+ ρR perfect. A+ ρR is called a neighbor of A or
the contiguous form of A through S.
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Theorem (G. Voronoi (1908))

The following algorithm yields a set of representatives of perfect
Hermitian forms up to the action of GL(L).

Algorithm

1 Find a first perfect form.

2 Determine all contiguous forms, check for isometry.

3 Continue this process with all new isometry classes until there
are no more new classes.

There exists an implementation of this algorithm in Magma.
Testing for isometry is based on Computing Isometries of Lattices
by W. Plesken and B. Souvignier.
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Definitions
Calculation

Definition: Minimal classes

A,B ∈ H+
n .

A,B minimally equivalent if SL(A) = SL(B)

ClL(A) := {F ∈ H+
n | SL(F ) = SL(A)},

the minimal class of A (w.r.t L).

C := ClL(A), SL(C ) := SL(A)
Call C well-rounded if SL(C ) contains a K -basis of Kn.

Remark

A perfect iff ClL(A) = {αA | α ∈ R>0}
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Definitions
Calculation

Remark

GL(L) acts on L ⇒ GL(L) acts on the minimal classes.
Minimal classes equivalent iff they are in the same orbit.
AutL(C ) := {g ∈ GL(L) | SL(C )g−1 = SL(C )}

Lemma (A.-M. Bergé)

C well-rounded minimal class, TC :=
∑

x∈SL(C) x∗x ∈ H+
n

C ,C ′ equivalent iff T−1
C ,T−1

C ′ L-isometric
(i.e. ∃ g ∈ GL(L) : T−1

C = T−1
C ′ [g ])
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Definitions
Calculation

Remark

dim(〈x∗x | x ∈ SL(F )〉), the perfection corank, is constant on
ClL(F ).

Theorem

A ∈ H+
n perfect. Any codimension k face of VL(A) naturally

corresponds to a minimal class of perfection corank k, represented
by

F := A+
1

2k

k∑
i=1

ρiRi =
1

k

k∑
i=1

(
A+

ρi
2

Ri

)
∈ H+

n

with facet vectors Ri .
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Results

Definition

G ≤ GL(L) finite.

F(G ) := {F ∈ Hn | F [g ] = F ∀ g ∈ GL(L)}.

F+(G ) := F(G ) ∩H+
n .

F ∈ F+(G ): ClL(F ) ∩ F+(G ) G -minimal class of F .
Call F G -perfect iff ClL(F ) ∩ F+(G ) = {αF | α ∈ R>0}.
πG : Hn → F(G ), F 7→ 1

|G |
∑

g∈G F [g ]

Lemma ([2])

C G -invariant minimal class.

C ∩ F(G ) = πG (C )
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Theorem ([2])

G ≤ GL(L) maximal finite ⇒ G = AutL(C ), C well-rounded
minimal class, s.t. dim(〈C ∩ F(G )〉) = 1.

Sketch of proof

If C is a well-rounded G -minimal class (such a class always exists),
then G ≤ AutL(C ) and AutL(C ) is finite; we have equality if G is
maximal finite.

Remark

This theorem yields a finite set of finite subgroups of GL(L),
containig a set of representatives of conjugacy classes of maximal
finite subgroups of GL(L).
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Remark

There are algorithmic tests to decide if a finite group is maximal
finite and to check if two maximal finite groups are conjugate.
They are described in [2].
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Q(
√
−6)

Well-rounded minimal classes for Q(
√
−6)

L = L0 L = L1

C G = AutL(C ) max. C G = AutL(C ) max.

P1 SL(2, 3) X P1 Q8 X
C1 D12 X P2 C3 o C4 X
C2 D12 X C1 D8 X
C3 C4 × C2 C4 ×
C4 D8 X C3 C4 ×
D1 D8 X C4 D12 X
D2 D8 X D1 C2 × C2 X
D3 C2 × C2 X D2 C2 × C2 X

=⇒ GL(L0) 6∼= GL(L1)
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Overview

Numer of conjugacy classes of maximal finite subgroups

D8 D12 C2 × C2 SL(2, 3) Q8 C3 o C4

K = Q(
√
−15)

St(L) = [OK ] 2 2 2 - - -
St(L) = [p2] 2 1 1 - - 1

K = Q(
√
−5)

St(L) = [OK ] 3 2 1 - 1 -
St(L) = [p2] 1 2 1 1 - -

K = Q(
√
−6)

St(L) = [OK ] 3 2 1 1 - -
St(L) = [p2] 1 1 2 - 1 1
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