Minimal Classes and maximal Subgroups

Oliver Braun

Lehrstuhl D für Mathematik RWTH Aachen University

September 3, 2013

□→ < □→</p>

Contents

- 2 Voronoi's algorithm
- 3 Minimal Classes
 - Definitions
 - Calculation
- Maximal finite subgroupsResults

- ● ● ●

Notation

- K imaginary quadratic number field
- \mathcal{O}_K ring of integers of K
- $\mathcal{C}\ell_K$ ideal class group of K, $|\mathcal{C}\ell_K| =: h_K$
- {a₁,..., a_{h_K}} set of representatives of the ideal classes, chosen to be integral and of minimal norm

- **→** → **→**

Notation

- K imaginary quadratic number field
- \mathcal{O}_K ring of integers of K
- $\mathcal{C}\ell_K$ ideal class group of K, $|\mathcal{C}\ell_K| =: h_K$
- {a₁,..., a_{h_K}} set of representatives of the ideal classes, chosen to be integral and of minimal norm
- \mathcal{H}_n set of Hermitian $n \times n$ -matrices
- \mathcal{H}_n^+ cone of positive definite Hermitian matrices

•
$$\mathcal{A} \in \mathcal{H}_n^+, x \in \mathcal{K}^n$$
: $\mathcal{A}[x] := x\mathcal{A}x^*$

- **→** → **→**

Definition

An \mathcal{O}_{K} -lattice L in K^{n} is a finitely generated \mathcal{O}_{K} -submodule s.t. $L \otimes_{\mathcal{O}_{K}} K \cong K^{n}$.

э

Definition

An \mathcal{O}_{K} -lattice L in K^{n} is a finitely generated \mathcal{O}_{K} -submodule s.t. $L \otimes_{\mathcal{O}_{K}} K \cong K^{n}$.

Theorem (Steinitz)

- There are fractional ideals $\mathfrak{b}_1, ..., \mathfrak{b}_n$ of K s.t. $L \cong \bigoplus_{i=1}^n \mathfrak{b}_i$.
- ② St(L) := $[\mathfrak{b}_1 \cdot ... \cdot \mathfrak{b}_n] \in C\ell_K$, Steinitz class of L.
- **③** Two lattices *L*, *M* are isomorphic iff St(L) = St(M).

- 4 同 6 4 日 6 4 日 6

Definition

An \mathcal{O}_{K} -lattice L in K^{n} is a finitely generated \mathcal{O}_{K} -submodule s.t. $L \otimes_{\mathcal{O}_{K}} K \cong K^{n}$.

Theorem (Steinitz)

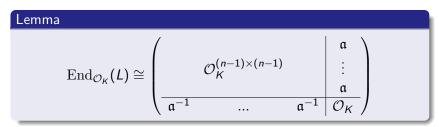
- There are fractional ideals $\mathfrak{b}_1, ..., \mathfrak{b}_n$ of K s.t. $L \cong \bigoplus_{i=1}^n \mathfrak{b}_i$.
- ② St(L) := $[\mathfrak{b}_1 \cdot ... \cdot \mathfrak{b}_n] \in C\ell_K$, Steinitz class of L.
- **③** Two lattices *L*, *M* are isomorphic iff St(L) = St(M).

Remark

 $\mathfrak{a} \oplus \mathfrak{b} \cong \mathcal{O}_{K} \oplus \mathfrak{a}\mathfrak{b} \Longrightarrow \mathcal{O}_{K}^{n-1} \oplus \mathfrak{a}, \ \mathfrak{a} \in {\mathfrak{a}_{1}, ..., \mathfrak{a}_{h_{K}}}$ is a set of representatives of the isomorphism classes of *n*-dimensional \mathcal{O}_{K} -lattices.

・ロト ・同ト ・ヨト ・ヨト

$$L = \mathcal{O}_K^{n-1} \oplus \mathfrak{a}$$



<ロ> <同> <同> < 同> < 同>

æ

$$L = \mathcal{O}_K^{n-1} \oplus \mathfrak{a}$$

Lemma

$$\operatorname{End}_{\mathcal{O}_{K}}(\mathcal{L}) \cong \begin{pmatrix} \mathcal{O}_{K}^{(n-1)\times(n-1)} & \mathfrak{a} \\ & \mathfrak{a} \\ \hline \mathfrak{a}^{-1} & \dots & \mathfrak{a}^{-1} & \mathcal{O}_{K} \end{pmatrix}$$

Theorem

$$GL(L) := (\operatorname{End}_{\mathcal{O}_K}(L))^* = \{A \in \operatorname{End}_{\mathcal{O}_K}(L) \mid \det(A) \in \mathcal{O}_K^*\}.$$

æ

$$L = \mathcal{O}_K^{n-1} \oplus \mathfrak{a}$$

Lemma $\operatorname{End}_{\mathcal{O}_{K}}(\mathcal{L}) \cong \begin{pmatrix} \mathcal{O}_{K}^{(n-1)\times(n-1)} & \mathfrak{a} \\ & \mathfrak{a} \\ \hline \mathfrak{a}^{-1} & \dots & \mathfrak{a}^{-1} & \mathcal{O}_{K} \end{pmatrix}$

Theorem

$$GL(L) := (\operatorname{End}_{\mathcal{O}_K}(L))^* = \{A \in \operatorname{End}_{\mathcal{O}_K}(L) \mid \operatorname{det}(A) \in \mathcal{O}_K^*\}.$$

Problem

For which lattices L_1, L_2 do we have $GL(L_1) \cong GL(L_2)$?

(日)

Partial Answer

$\operatorname{St}(L_1) \in \operatorname{Gal}(L/K) \operatorname{St}(L_2) \operatorname{\mathcal{C}}\ell_K^n \Longrightarrow \operatorname{GL}(L_1) \cong \operatorname{GL}(L_2)$

э

Partial Answer

$$\operatorname{St}(L_1) \in \operatorname{Gal}(L/K) \operatorname{St}(L_2) \operatorname{\mathcal{C}\ell}_K^n \Longrightarrow \operatorname{GL}(L_1) \cong \operatorname{GL}(L_2)$$

General strategy

• Determine a set of representatives of conjugacy classes of maximal finite subgroups.

< 🗇 > < 🖃 >

Partial Answer

$\operatorname{St}(L_1) \in \operatorname{Gal}(L/K) \operatorname{St}(L_2) \ \mathcal{C}\ell_K^n \Longrightarrow \mathsf{GL}(L_1) \cong \mathsf{GL}(L_2)$

General strategy

- Determine a set of representatives of conjugacy classes of maximal finite subgroups.
- Use Voronoi's algorithm and "minimal classes" find maximal finite subgroups as stabilizers of a suitable group action

• □ ▶ • □ ▶ • □ ▶ •

Contents

2 Voronoi's algorithm

3 Minimal Classes

- Definitions
- Calculation
- Maximal finite subgroupsResults

$$L:=\mathcal{O}_{K}^{n-1}\oplus\mathfrak{a},\ \mathcal{A}\in\mathcal{H}_{n}^{+}$$

Definition: Minimum and Perfection

• $(x_1, ..., x_n) \in L$: $\mathfrak{a}_x := x_1 \mathcal{O}_K + ... + x_{n-1} \mathcal{O}_K + x_n \mathfrak{a}^{-1} \subseteq \mathcal{O}_K$, $N(\mathfrak{a}_x) = |\mathcal{O}_K/\mathfrak{a}_x|$

□→ < □→</p>

$$L:=\mathcal{O}_{K}^{n-1}\oplus\mathfrak{a},\ \mathcal{A}\in\mathcal{H}_{n}^{+}$$

Definition: Minimum and Perfection

• $(x_1, ..., x_n) \in L$: $\mathfrak{a}_x := x_1 \mathcal{O}_K + ... + x_{n-1} \mathcal{O}_K + x_n \mathfrak{a}^{-1} \subseteq \mathcal{O}_K$, $N(\mathfrak{a}_x) = |\mathcal{O}_K/\mathfrak{a}_x|$

•
$$\min_{L}(\mathcal{A}) := \min_{0 \neq x \in L} \frac{\mathcal{A}[x]}{N(\mathfrak{a}_{x})}$$

▲ 同 ▶ → 三 ▶

$$L:=\mathcal{O}_{K}^{n-1}\oplus\mathfrak{a},\ \mathcal{A}\in\mathcal{H}_{n}^{+}$$

Definition: Minimum and Perfection

- $(x_1, ..., x_n) \in L$: $\mathfrak{a}_x := x_1 \mathcal{O}_K + ... + x_{n-1} \mathcal{O}_K + x_n \mathfrak{a}^{-1} \subseteq \mathcal{O}_K$, $N(\mathfrak{a}_x) = |\mathcal{O}_K/\mathfrak{a}_x|$
- $\min_{L}(\mathcal{A}) := \min_{0 \neq x \in L} \frac{\mathcal{A}[x]}{N(\mathfrak{a}_{x})}$

•
$$S_L(\mathcal{A}) := \left\{ x \in L \mid \frac{\mathcal{A}[x]}{N(\mathfrak{a}_x)} = \min_L(\mathcal{A}), \ \mathfrak{a}_x \in \{\mathfrak{a}_1, ..., \mathfrak{a}_{h_K}\} \right\}$$

- **→** → **→**

э

$$L:=\mathcal{O}_{K}^{n-1}\oplus\mathfrak{a},\ \mathcal{A}\in\mathcal{H}_{n}^{+}$$

Definition: Minimum and Perfection

- $(x_1, ..., x_n) \in L$: $\mathfrak{a}_x := x_1 \mathcal{O}_K + ... + x_{n-1} \mathcal{O}_K + x_n \mathfrak{a}^{-1} \subseteq \mathcal{O}_K$, $N(\mathfrak{a}_x) = |\mathcal{O}_K/\mathfrak{a}_x|$
- $\min_{L}(\mathcal{A}) := \min_{0 \neq x \in L} \frac{\mathcal{A}[x]}{N(\mathfrak{a}_{x})}$

•
$$S_L(\mathcal{A}) := \left\{ x \in L \mid \frac{\mathcal{A}[x]}{N(\mathfrak{a}_x)} = \min_L(\mathcal{A}), \ \mathfrak{a}_x \in \{\mathfrak{a}_1, ..., \mathfrak{a}_{h_K}\} \right\}$$

• \mathcal{A} is called perfect w.r.t L iff $\langle x^*x \mid x \in S_L(\mathcal{A}) \rangle_{\mathbb{R}} = \mathcal{H}_n$

- **→** → **→**

$$L:=\mathcal{O}_{K}^{n-1}\oplus\mathfrak{a},\ \mathcal{A}\in\mathcal{H}_{n}^{+}$$

Definition: Minimum and Perfection

• $(x_1, ..., x_n) \in L$: $\mathfrak{a}_x := x_1 \mathcal{O}_K + ... + x_{n-1} \mathcal{O}_K + x_n \mathfrak{a}^{-1} \subseteq \mathcal{O}_K$, $N(\mathfrak{a}_x) = |\mathcal{O}_K/\mathfrak{a}_x|$

•
$$\min_{L}(\mathcal{A}) := \min_{0 \neq x \in L} \frac{\mathcal{A}[x]}{N(\mathfrak{a}_{x})}$$

•
$$S_L(\mathcal{A}) := \left\{ x \in L \mid \frac{\mathcal{A}[x]}{N(\mathfrak{a}_x)} = \min_L(\mathcal{A}), \ \mathfrak{a}_x \in \{\mathfrak{a}_1, ..., \mathfrak{a}_{h_K}\} \right\}$$

•
$$\mathcal A$$
 is called perfect w.r.t L iff $\langle x^*x\mid x\in \mathcal S_L(\mathcal A)
angle_{\mathbb R}=\mathcal H_n$

Theorem (G. Voronoi (1908), P. Humbert (1949))

Up to the natural action of GL(L) and multiplication by $\mathbb{R}_{>0}$ there are only finitely many perfect $\mathcal{A} \in \mathcal{H}_n^+$.

▲□ ► ▲ □ ► ▲

Determining these finitely many perfect forms:

э

Definition: Voronoi-cone

$$\mathcal{V}_L(\mathcal{A}) := \left\{ \sum_{x \in \mathcal{S}_L(\mathcal{A})} \lambda_x x^* x \mid \lambda_x \in \mathbb{R}_{\geq 0}
ight\}$$

< ロ > < 同 > < 三 > <

э

∃ >

Definition: Voronoi-cone

$$\mathcal{V}_L(\mathcal{A}) := \left\{ \sum_{x \in \mathcal{S}_L(\mathcal{A})} \lambda_x x^* x \mid \lambda_x \in \mathbb{R}_{\geq 0}
ight\}$$

Now calculate all facets and "neighbors" of $\mathcal{V}_L(\mathcal{A})$.

Image: A image: A

Definition: Voronoi-cone

$$\mathcal{V}_L(\mathcal{A}) := \left\{ \sum_{x \in \mathcal{S}_L(\mathcal{A})} \lambda_x x^* x \mid \lambda_x \in \mathbb{R}_{\geq 0}
ight\}$$

Now calculate all facets and "neighbors" of $\mathcal{V}_L(\mathcal{A})$.

Definition: Neighbor / contiguous form

 $\mathcal{A} \in \mathcal{H}_n^+$ perfect, \mathfrak{S} facet of $\mathcal{V}_L(\mathcal{A})$, R facet vector, i.e. $\operatorname{Trace}(RS) = 0 \ \forall \ S \in \mathfrak{S}, \ \operatorname{Trace}(RT) \ge 0 \ \forall \ T \in \mathcal{V}_L(\mathcal{A}).$

Image: A image: A

Definition: Voronoi-cone

$$\mathcal{V}_L(\mathcal{A}) := \left\{ \sum_{x \in \mathcal{S}_L(\mathcal{A})} \lambda_x x^* x \mid \lambda_x \in \mathbb{R}_{\geq 0}
ight\}$$

Now calculate all facets and "neighbors" of $\mathcal{V}_L(\mathcal{A})$.

Definition: Neighbor / contiguous form

 $\mathcal{A} \in \mathcal{H}_n^+$ perfect, \mathfrak{S} facet of $\mathcal{V}_L(\mathcal{A})$, R facet vector, i.e. $\operatorname{Trace}(RS) = 0 \ \forall \ S \in \mathfrak{S}, \ \operatorname{Trace}(RT) \ge 0 \ \forall \ T \in \mathcal{V}_L(\mathcal{A}).$ $\exists ! \rho > 0, \ \text{s.t.} \ \mathcal{A} + \rho R \ \text{perfect.} \ \mathcal{A} + \rho R \ \text{is called a neighbor of } \mathcal{A} \ \text{or}$ the contiguous form of \mathcal{A} through \mathfrak{S} .

< ロト < 同ト < 三ト <

Theorem (G. Voronoi (1908))

The following algorithm yields a set of representatives of perfect Hermitian forms up to the action of GL(L).

Image: A image: A

Theorem (G. Voronoi (1908))

The following algorithm yields a set of representatives of perfect Hermitian forms up to the action of GL(L).

Algorithm

Find a first perfect form.

Theorem (G. Voronoi (1908))

The following algorithm yields a set of representatives of perfect Hermitian forms up to the action of GL(L).

Algorithm

- Find a first perfect form.
- 2 Determine all contiguous forms, check for isometry.

Theorem (G. Voronoi (1908))

The following algorithm yields a set of representatives of perfect Hermitian forms up to the action of GL(L).

Algorithm

- Find a first perfect form.
- 2 Determine all contiguous forms, check for isometry.
- Ontinue this process with all new isometry classes until there are no more new classes.

Theorem (G. Voronoi (1908))

The following algorithm yields a set of representatives of perfect Hermitian forms up to the action of GL(L).

Algorithm

- Find a first perfect form.
- 2 Determine all contiguous forms, check for isometry.
- Ontinue this process with all new isometry classes until there are no more new classes.

There exists an implementation of this algorithm in Magma. Testing for isometry is based on *Computing Isometries of Lattices* by W. Plesken and B. Souvignier.

< 口 > < 同 > < 三 > < 三

Definitions Calculation

Contents

2 Voronoi's algorithm

- 3 Minimal Classes
 - Definitions
 - Calculation

Definitions Calculation

Definition: Minimal classes

 $\mathcal{A}, \mathcal{B} \in \mathcal{H}_n^+.$ \mathcal{A}, \mathcal{B} minimally equivalent if $S_L(\mathcal{A}) = S_L(\mathcal{B})$

$$\operatorname{Cl}_{L}(\mathcal{A}) := \{ F \in \mathcal{H}_{n}^{+} \mid S_{L}(F) = S_{L}(\mathcal{A}) \},$$

the **minimal class** of \mathcal{A} (w.r.t L).

(日) (同) (三) (三)

э

Definitions Calculation

Definition: Minimal classes

 $\mathcal{A}, \mathcal{B} \in \mathcal{H}_n^+.$ \mathcal{A}, \mathcal{B} minimally equivalent if $S_L(\mathcal{A}) = S_L(\mathcal{B})$

$$\operatorname{Cl}_{L}(\mathcal{A}) := \{ F \in \mathcal{H}_{n}^{+} \mid S_{L}(F) = S_{L}(\mathcal{A}) \},$$

the minimal class of \mathcal{A} (w.r.t L). $C := \operatorname{Cl}_{L}(\mathcal{A}), S_{L}(C) := S_{L}(\mathcal{A})$ Call C well-rounded if $S_{L}(C)$ contains a K-basis of K^{n} .

- 4 同 6 4 日 6 4 日 6

Definitions Calculation

Definition: Minimal classes

 $\mathcal{A}, \mathcal{B} \in \mathcal{H}_n^+.$ \mathcal{A}, \mathcal{B} minimally equivalent if $S_l(\mathcal{A}) = S_l(\mathcal{B})$

$$\operatorname{Cl}_L(\mathcal{A}) := \{ F \in \mathcal{H}_n^+ \mid S_L(F) = S_L(\mathcal{A}) \},$$

the minimal class of \mathcal{A} (w.r.t L). $C := \operatorname{Cl}_{L}(\mathcal{A}), S_{L}(C) := S_{L}(\mathcal{A})$ Call C well-rounded if $S_{L}(C)$ contains a K-basis of K^{n} .

Remark

$$\mathcal{A}$$
 perfect iff $\operatorname{Cl}_{\mathcal{L}}(\mathcal{A}) = \{ \alpha \mathcal{A} \mid \alpha \in \mathbb{R}_{>0} \}$

Remark

GL(L) acts on $L \Rightarrow GL(L)$ acts on the minimal classes. Minimal classes **equivalent** iff they are in the same orbit. $Aut_L(C) := \{g \in GL(L) \mid S_L(C)g^{-1} = S_L(C)\}$

Remark

GL(L) acts on $L \Rightarrow GL(L)$ acts on the minimal classes. Minimal classes **equivalent** iff they are in the same orbit. $Aut_L(C) := \{g \in GL(L) \mid S_L(C)g^{-1} = S_L(C)\}$

Lemma (A.-M. Bergé)

C well-rounded minimal class,
$$T_C := \sum_{x \in S_L(C)} x^* x \in \mathcal{H}_n^+$$

Remark

GL(L) acts on $L \Rightarrow GL(L)$ acts on the minimal classes. Minimal classes **equivalent** iff they are in the same orbit. $Aut_L(C) := \{g \in GL(L) \mid S_L(C)g^{-1} = S_L(C)\}$

Lemma (A.-M. Bergé)

C well-rounded minimal class, $T_C := \sum_{x \in S_L(C)} x^* x \in \mathcal{H}_n^+$ C, C' equivalent iff T_C^{-1} , $T_{C'}^{-1}$ L-isometric (i.e. $\exists g \in GL(L) : T_C^{-1} = T_{C'}^{-1}[g]$)

(日)

Definitions Calculation

Remark

dim($\langle x^*x \mid x \in S_L(F) \rangle$), the **perfection corank**, is constant on $Cl_L(F)$.

э

Definitions Calculation

Remark

dim($\langle x^*x \mid x \in S_L(F) \rangle$), the **perfection corank**, is constant on $Cl_L(F)$.

Theorem

 $\mathcal{A} \in \mathcal{H}_n^+$ perfect. Any codimension k face of $\mathcal{V}_L(\mathcal{A})$ naturally corresponds to a minimal class of perfection corank k, represented by

$$F := \mathcal{A} + \frac{1}{2k} \sum_{i=1}^{k} \rho_i R_i = \frac{1}{k} \sum_{i=1}^{k} \left(\mathcal{A} + \frac{\rho_i}{2} R_i \right) \in \mathcal{H}_n^+$$

with facet vectors R_i.

(日)

Results

Contents

- 2 Voronoi's algorithm
- 3 Minimal Classes
 - Definitions
 - Calculation

- ● ● ●

Results

Definition

 $G \leq GL(L)$ finite.

$$\mathcal{F}(G) := \{F \in \mathcal{H}_n \mid F[g] = F \ \forall \ g \in GL(L)\}.$$

 $\mathcal{F}^+(G) := \mathcal{F}(G) \cap \mathcal{H}_n^+.$

æ

《曰》《聞》《臣》《臣》

Results

Definition

 $G \leq GL(L)$ finite.

$$\mathcal{F}(G) := \{F \in \mathcal{H}_n \mid F[g] = F \ \forall \ g \in GL(L)\}.$$

 $\mathcal{F}^+(G) := \mathcal{F}(G) \cap \mathcal{H}_n^+.$ $F \in \mathcal{F}^+(G): \operatorname{Cl}_L(F) \cap \mathcal{F}^+(G)$ *G*-minimal class of *F*.

э

Results

Definition

 $G \leq GL(L)$ finite.

$$\mathcal{F}(G) := \{F \in \mathcal{H}_n \mid F[g] = F \,\,\forall \,\, g \in \mathrm{GL}(L)\}.$$

 $\mathcal{F}^+(G) := \mathcal{F}(G) \cap \mathcal{H}_n^+.$ $F \in \mathcal{F}^+(G): \operatorname{Cl}_L(F) \cap \mathcal{F}^+(G) \text{ G-minimal class of } F.$ Call F G-perfect iff $\operatorname{Cl}_L(F) \cap \mathcal{F}^+(G) = \{ \alpha F \mid \alpha \in \mathbb{R}_{>0} \}.$

Image: A image: A

ヨート

Results

Definition

 $G \leq GL(L)$ finite.

$$\mathcal{F}(G) := \{F \in \mathcal{H}_n \mid F[g] = F \ \forall \ g \in GL(L)\}.$$

 $\begin{aligned} \mathcal{F}^+(G) &:= \mathcal{F}(G) \cap \mathcal{H}_n^+. \\ F \in \mathcal{F}^+(G) \colon \operatorname{Cl}_L(F) \cap \mathcal{F}^+(G) \text{ } G\text{-minimal class of } F. \\ \text{Call } F \text{ } G\text{-perfect iff } \operatorname{Cl}_L(F) \cap \mathcal{F}^+(G) &= \{ \alpha F \mid \alpha \in \mathbb{R}_{>0} \}. \\ \pi_G : \mathcal{H}_n \to \mathcal{F}(G), \ F \mapsto \frac{1}{|G|} \sum_{g \in G} F[g] \end{aligned}$

Results

Definition

 $G \leq GL(L)$ finite.

$$\mathcal{F}(G) := \{F \in \mathcal{H}_n \mid F[g] = F \,\,\forall \,\, g \in \mathrm{GL}(L)\}.$$

$$\begin{aligned} \mathcal{F}^+(G) &:= \mathcal{F}(G) \cap \mathcal{H}_n^+. \\ F \in \mathcal{F}^+(G) \colon \operatorname{Cl}_L(F) \cap \mathcal{F}^+(G) \text{ G-minimal class of } F. \\ \text{Call } F \text{ G-perfect iff } \operatorname{Cl}_L(F) \cap \mathcal{F}^+(G) &= \{ \alpha F \mid \alpha \in \mathbb{R}_{>0} \}. \\ \pi_G : \mathcal{H}_n \to \mathcal{F}(G), \ F \mapsto \frac{1}{|G|} \sum_{g \in G} F[g] \end{aligned}$$

Lemma ([2])

C G-invariant minimal class.

$$C\cap \mathcal{F}(G)=\pi_G(C)$$

æ

A (1) > A (2) > A

Results

Theorem ([2])

 $G \leq GL(L)$ maximal finite $\Rightarrow G = Aut_L(C)$, C well-rounded minimal class, s.t. dim $(\langle C \cap \mathcal{F}(G) \rangle) = 1$.

(日) (同) (三) (三)

э

Results

Theorem ([2])

 $G \leq GL(L)$ maximal finite $\Rightarrow G = Aut_L(C)$, C well-rounded minimal class, s.t. dim $(\langle C \cap \mathcal{F}(G) \rangle) = 1$.

Sketch of proof

If C is a well-rounded G-minimal class (such a class always exists), then $G \leq \operatorname{Aut}_L(C)$ and $\operatorname{Aut}_L(C)$ is finite; we have equality if G is maximal finite.

Image: A image: A

Results

Theorem ([2])

 $G \leq GL(L)$ maximal finite $\Rightarrow G = Aut_L(C)$, C well-rounded minimal class, s.t. dim $(\langle C \cap \mathcal{F}(G) \rangle) = 1$.

Sketch of proof

If C is a well-rounded G-minimal class (such a class always exists), then $G \leq \operatorname{Aut}_L(C)$ and $\operatorname{Aut}_L(C)$ is finite; we have equality if G is maximal finite.

Remark

This theorem yields a finite set of finite subgroups of GL(L), containing a set of representatives of conjugacy classes of maximal finite subgroups of GL(L).

< ロト < 同ト < 三ト <

Remark

There are algorithmic tests to decide if a finite group is maximal finite and to check if two maximal finite groups are conjugate. They are described in [2].

Image: A image: A

Results

 $\mathbb{Q}(\sqrt{-6})$

Well-rounded minimal classes for $\mathbb{Q}(\sqrt{-6})$									
	$L = L_0$		$L = L_1$						
С	$G = \operatorname{Aut}_L(C)$	max.	С	$G = \operatorname{Aut}_L(C)$	max.				
P_1	SL(2,3)	\checkmark	P_1	Q_8	\checkmark				
<i>C</i> ₁	D ₁₂	\checkmark	P_2	$C_3 \rtimes C_4$	\checkmark				
C_2	D ₁₂	\checkmark	<i>C</i> ₁	D ₈	\checkmark				
<i>C</i> ₃	<i>C</i> ₄	×	C_2	<i>C</i> ₄	×				
C_4	D_8	\checkmark	<i>C</i> ₃	<i>C</i> ₄	×				
D_1	D ₈	\checkmark	C_4	D ₁₂	\checkmark				
D_2	D_8	\checkmark	D_1	$C_2 \times C_2$	\checkmark				
D ₃	$C_2 \times C_2$	\checkmark	D_2	$C_2 \times C_2$	\checkmark				

 $\Longrightarrow \operatorname{GL}(L_0) \not\cong \operatorname{GL}(L_1)$

<ロ> <同> <同> < 同> < 同>

æ

Results

Overview

Numer of conjugacy classes of maximal finite subgroups

	D_8	D ₁₂	$C_2 \times C_2$	SL(2,3)	Q_8	$C_3 \rtimes C_4$
$K = \mathbb{Q}(\sqrt{-15})$						
$\operatorname{St}(L) = [\mathcal{O}_{K}]$	2	2	2	-	-	-
$\operatorname{St}(L) = [\mathfrak{p}_2]$	2	1	1	-	-	1
$K = \mathbb{Q}(\sqrt{-5})$						
$\operatorname{St}(L) = [\mathcal{O}_K]$	3	2	1	-	1	-
$\operatorname{St}(L) = [\mathfrak{p}_2]$	1	2	1	1	-	-
$K = \mathbb{Q}(\sqrt{-6})$						
$\operatorname{St}(L) = [\mathcal{O}_K]$	3	2	1	1	-	-
$\operatorname{St}(L) = [\mathfrak{p}_2]$	1	1	2	-	1	1

э

(日) (同) (三) (三)

References

- Oliver Braun, Renaud Coulangeon: Perfect Lattices for Imaginary Quadratic Number Fields arXiv:1304.0559[math.NT]
- Renaud Coulangeon, Gabriele Nebe Maximal finite subgroups and minimal classes arXiv:1304.2597 [math.NT]
- Jacques Martinet Perfect Lattices in Euclidean Spaces

Grundlehren der Mathematischen Wissenschaften, Vol. 327, Springer-Verlag, 2003

A > 4 3