Solution to Exercise 4.1.4

For any *G*-orbit \mathcal{O} on $\Omega_2 \times \Omega_1$ define the *R*-linear map

$$\theta_{\mathcal{O}}^R \colon R\Omega_1 \to R\Omega_2 \quad \text{by} \quad \theta_{\mathcal{O}}^R(x) := \sum_{\substack{y \in \Omega_2 \\ (y,x) \in \mathcal{O}}} y \qquad (x \in \Omega_1).$$

Then $\{\theta_{\mathcal{O}}^R \mid \mathcal{O} \text{ a } G\text{-orbit on } Y \times X\}$ is an *R*-basis of $\operatorname{Hom}_{RG}(R\Omega_1, R\Omega_2)$ by Lemma 1.2.15. If $\eta \colon R \to F$ is the canonical epimorphism then

$$\eta' \colon \operatorname{Hom}_{RG}(R\Omega_1, R\Omega_2) \to \operatorname{Hom}_{FG}(F\Omega_1, F\Omega_2),$$
$$\sum_{\mathcal{O}} a_{\mathcal{O}} \, \theta_{\mathcal{O}}^R \mapsto \sum_{\mathcal{O}} \eta(a_{\mathcal{O}}) \, \theta_{\mathcal{O}}^F$$

is an *R*-linear epimorphism with kernel $\pi \operatorname{Hom}_{RG}(R\Omega_1, R\Omega_2)$. Observe that

 $\operatorname{Hom}_{FG}(F\Omega_1, F\Omega_2)$ is an *R*-module by inflation (using η). From this (a) follows. Let $\Omega := \Omega_1 = \Omega_2$. Then $\theta_{\mathcal{O}}^R \mapsto \theta_{\mathcal{O}}^K$ yields an embedding of the *R*-order $\operatorname{End}_{RG}(R\Omega)$ into $\operatorname{End}_{KG}(K\Omega)$. In this case η' is an *R*-algebra-homomorphism and hence

$$\operatorname{End}_{FG}(F\Omega) \cong \operatorname{End}_{RG}(R\Omega)/\pi \operatorname{End}_{RG}(R\Omega)$$

as R-algebras and also as F-algebras, since πR acts trivially on both sides. So (b) holds.