Homology Groups of Unit Groups of Orders

Sebastian Schönnenbeck

Lehrstuhl D für Mathematik
RWTH Aachen University

3rd September 2013
Overview

1. Some Definitions

2. Resolutions for Unit Groups of Orders
 - Quadratic Forms
 - Perturbations
 - The Well-Rounded Retract

3. Computational Example
 - $\mathbb{Q}(\sqrt{-5})$
1 Some Definitions

2 Resolutions for Unit Groups of Orders
 - Quadratic Forms
 - Perturbations
 - The Well-Rounded Retract

3 Computational Example
 - $\mathbb{Q}(\sqrt{-5})$
Definition: Chain Complexes

A positive chain complex $C = \{ C_n, \partial_n \mid n \geq 0 \}$ over the ring R is a family of R-modules $C_n, n \geq 0$, together with a family of morphisms $\partial_n : C_n \to C_{n-1}, n \geq 1$, with the property $\partial_n \partial_{n+1} = 0$ for all n.

$$\cdots \partial_{n+1} \to C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots \partial_2 \to C_1 \xrightarrow{\partial_1} C_0 \to 0$$
Definition: Chain Complexes

A positive chain complex $C = \{ C_n, \partial_n | n \geq 0 \}$ over the ring R is a family of R-modules $C_n, n \geq 0$, together with a family of morphisms $\partial_n : C_n \rightarrow C_{n-1}, n \geq 1$, with the property $\partial_n \partial_{n+1} = 0$ for all n.

\[
\cdots \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{0}
\]

Definition

- $H_n(C) := \ker(\partial_n) / \img(\partial_{n+1})$ is called the nth homology module of C.
Definition: Chain Complexes

A positive chain complex \(C = \{ C_n, \partial_n \mid n \geq 0 \} \) over the ring \(R \) is a family of \(R \)-modules \(C_n, n \geq 0 \), together with a family of morphisms \(\partial_n : C_n \to C_{n-1}, n \geq 1 \), with the property \(\partial_n \partial_{n+1} = 0 \) for all \(n \).

\[
\cdots \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{} 0
\]

Definition

- \(H_n(C) := \ker(\partial_n) / \img(\partial_{n+1}) \) is called the \(n \)th homology module of \(C \).
- \(C \) is called acyclic, if \(H_n(C) = 0 \) for all \(n \geq 1 \).
Definition: Chain Complexes

A positive chain complex $C = \{ C_n, \partial_n \mid n \geq 0 \}$ over the ring R is a family of R-modules $C_n, n \geq 0$, together with a family of morphisms $\partial_n : C_n \rightarrow C_{n-1}, n \geq 1$, with the property $\partial_n \partial_{n+1} = 0$ for all n.

\[
\cdots \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \rightarrow 0
\]

Definition

- $H_n(C) := \ker(\partial_n)/\text{img}(\partial_{n+1})$ is called the nth homology module of C.
- C is called acyclic, if $H_n(C) = 0$ for all $n \geq 1$.
- C is called projective (free), if C_n is projective (free) for all $n \in \mathbb{Z}$.
Definition: Resolution

A an R-module. An acyclic und projective (free) chain complex of the form

$$P : \ldots \rightarrow P_n \rightarrow \ldots \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow 0$$

with $H_0(P) \cong A$ is called a projective (free) resolution of A.
Definition: Resolution

A an R-module. An acyclic und projective (free) chain complex of the form

$$P : \ldots \rightarrow P_n \rightarrow \ldots \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow 0$$

with $H_0(P) \cong A$ is called a projective (free) resolution of A.

Remark

Every R-module has a free resolution.
Definition: The Functor Tor

B an R-right module. $\text{Tor}_n^R(B, -) : R - \text{mod} \to \text{Ab}$ is the functor, whose value $\text{Tor}_n^R(B, A)$ may be computed in the following way:
Definition: The Functor Tor

B an R-right module. $\text{Tor}^R_n(B, -) : R - \text{mod} \to \text{Ab}$ is the functor, whose value $\text{Tor}^R_n(B, A)$ may be computed in the following way:

- Find a free resolution $P = \{P_n, \partial_n\}$ of A.

$\text{Tor}^R_n(B, A) := H^n(B \otimes_R P)$.
Definition: The Functor Tor

B an R-right module. $\text{Tor}^R_n(B, -) : R - \text{mod} \to \text{Ab}$ is the functor, whose value $\text{Tor}^R_n(B, A)$ may be computed in the following way:

- Find a free resolution $P = \{P_n, \partial_n\}$ of A.
- Form the chain complex $B \otimes_R P = \{B \otimes_R P_n, \partial_n\}$.

Group Homology

G group, $R = \mathbb{Z}$ G-module. $\text{H}_n(G, B)$ is called the nth homology group of G with coefficients in B.

Sebastian Schönnenbeck

Homology Groups of Unit Groups of Orders
Definition: The Functor Tor

Let B be an R-right module. $\text{Tor}^R_n(B, -) : R\text{-mod} \to \text{Ab}$ is the functor, whose value $\text{Tor}^R_n(B, A)$ may be computed in the following way:

- Find a free resolution $P = \{P_n, \partial_n\}$ of A.
- Form the chain complex $B \otimes_R P = \{B \otimes_R P_n, \partial_n\}$.
- $\text{Tor}^R_n(B, A) := H_n(B \otimes P)$.
Definition: The Functor Tor

B an R-right module. $\text{Tor}_{n}^{R}(B, -) : R \text{- mod} \rightarrow \text{Ab}$ is the functor, whose value $\text{Tor}_{n}^{R}(B, A)$ may be computed in the following way:

- Find a free resolution $P = \{P_n, \partial_n\}$ of A.
- Form the chain complex $B \otimes R P = \{B \otimes R P_n, \partial_n\}$.
- $\text{Tor}_{n}^{R}(B, A) := \text{H}_n(B \otimes P)$.

Group Homology

G group, $R = \mathbb{Z}G$, B an R-module.

$\text{H}_n(G, B) := \text{Tor}_{n}^{R}(B, \mathbb{Z})$ is called the nth homology group of G with coefficients in B.
Übersicht

1. Some Definitions

2. Resolutions for Unit Groups of Orders
 - Quadratic Forms
 - Perturbations
 - The Well-Rounded Retract

3. Computational Example
 - $\mathbb{Q}(\sqrt{-5})$
Situation: D a finite-dimensional \mathbb{Q}-division algebra, $K = Z(D)$, R the \mathbb{Z}-maximal order in K, $A = D^{n \times n}$ a simple \mathbb{Q}-algebra, \mathcal{O} a R-maximal order in D. L an \mathcal{O}-lattice in $V = D^n$.
Situation: D a finite-dimensional \mathbb{Q}-division algebra, $K = Z(D)$, R the \mathbb{Z}-maximal order in K, $A = D^{n \times n}$ a simple \mathbb{Q}-algebra, \mathcal{O} a R-maximal order in D. L an \mathcal{O}-lattice in $V = D^n$.

Task: Compute a free $\mathbb{Z}G$-resolution of \mathbb{Z} for $G = \text{GL}(L) = \text{End}_\mathcal{O}(L)^*$.
Situation: D a finite-dimensional \mathbb{Q}-division algebra, $K = \mathbb{Z}(D)$, R the \mathbb{Z}-maximal order in K, $A = D^{n \times n}$ a simple \mathbb{Q}-algebra, \mathcal{O} a R-maximal order in D. L an \mathcal{O}-lattice in $V = D^n$.

Task: Compute a free $\mathbb{Z}G$-resolution of \mathbb{Z} for $G = \text{GL}(L) = \text{End}_\mathcal{O}(L)^*$.

Notation:

1. $D_R := D \otimes_\mathbb{Q} R$ is a direct sum of matrix rings over $\mathbb{R}, \mathbb{C}, \mathbb{H}$.

Sebastian Schönnenbeck

Homology Groups of Unit Groups of Orders
Situation: D a finite-dimensional \mathbb{Q}-division algebra, $K = \mathbb{Z}(D)$, R the \mathbb{Z}-maximal order in K, $A = D^{n\times n}$ a simple \mathbb{Q}-algebra, \mathcal{O} a R-maximal order in D. L an \mathcal{O}-lattice in $V = D^n$.

Task: Compute a free $\mathbb{Z}G$-resolution of \mathbb{Z} for $G = GL(L) = \text{End}_{\mathcal{O}}(L)^*$.

Notation:

1. $D_R := D \otimes_{\mathbb{Q}} \mathbb{R}$ is a direct sum of matrix rings over $\mathbb{R}, \mathbb{C}, \mathbb{H}$.
2. $A_R := A \otimes_{\mathbb{Q}} \mathbb{R}$ admits a natural involution \dagger (transpose and conjugate).
Situation: D a finite-dimensional \mathbb{Q}-division algebra, $K = \mathbb{Z}(D)$, R the \mathbb{Z}-maximal order in K, $A = D^{n\times n}$ a simple \mathbb{Q}-algebra, \mathcal{O} a R-maximal order in D. L an \mathcal{O}-lattice in $V = D^n$.

Task: Compute a free $\mathbb{Z}G$-resolution of \mathbb{Z} for $G = \text{GL}(L) = \text{End}_\mathcal{O}(L)^*$.

Notation:

1. $D_R := D \otimes_\mathbb{Q} R$ is a direct sum of matrix rings over $R, \mathbb{C}, \mathbb{H}$.
2. $A_R := A \otimes_\mathbb{Q} R$ admits a natural involution \dagger (transpose and conjugate).
3. $\Sigma := \{ F \in A_R \mid F^\dagger = F \}$ admits a positive definite inner product $\langle F, F' \rangle := \text{Tr}(FF')$ (reduced trace).
Idea: Find a cell complex, which admits a cellular G-action and use its cellular chain complex.
Idea: Find a cell complex, which admits a cellular G-action and use its cellular chain complex.

Definition: Shortest Vectors

Any $F \in \Sigma$ defines a quadratic form on $V_{\mathbb{R}}$ via $F[x] := \langle F, xx^\dagger \rangle$. Let $P \subset \Sigma$ be the set of elements whose corresponding forms are positive definite.
Idea: Find a cell complex, which admits a cellular G-action and use its cellular chain complex.

Definition: Shortest Vectors

1. Any $F \in \Sigma$ defines a quadratic form on $V_{\mathbb{R}}$ via $F[x] := \langle F, xx^\dagger \rangle$. Let $P \subset \Sigma$ be the set of elements whose corresponding forms are positive definite.

2. $\min_L(F) := \min_{0 \neq x \in L} F[x]$, $S_L(F) := \{x \in L \mid F[x] = \min_L(F)\}$.
Idea: Find a cell complex, which admits a cellular G-action and use its cellular chain complex.

Definition: Shortest Vectors

1. Any $F \in \Sigma$ defines a quadratic form on $V_\mathbb{R}$ via $F[x] := \langle F, xx^\dagger \rangle$. Let $P \subset \Sigma$ be the set of elements whose corresponding forms are positive definite.

2. $\min_L(F) := \min_{0 \neq x \in L} F[x]$, $S_L(F) := \{ x \in L \mid F[x] = \min_L(F) \}$.

The Cell Structure

$F \in P$. Define $\text{Cl}_L(F) := \{ F' \in P \mid S_L(F) = S_L(F') \}$ the *minimal class* corresponding to F.
Properties of this decomposition

1. G acts on P via $gF := g^\dagger Fg$.

2. Partial ordering on the minimal classes: $C \preceq C' \iff SL(C) \subseteq SL(C')$.

3. The decomposition as well as the partial ordering are compatible with the G-action.

4. We have $C = \bigcup_{C \preceq C'} C'$.

The cellular chain complex

The decomposition yields an acyclic chain complex C, where C_n is the free Abelian group on the minimal classes in dimension n. C_n becomes a G-module by means of the G-action.
Properties of this decomposition

1. G acts on P via $gF := g^\dagger Fg$.
2. Partial ordering on the minimal classes: $C \leq C' \iff SL(C) \subset SL(C')$.
Properties of this decomposition

1. \(G \) acts on \(P \) via \(gF := g^\dagger Fg \).

2. Partial ordering on the minimal classes:
 \(C \preceq C' \iff S_L(C) \subseteq S_L(C') \).

3. The decomposition as well as the partial ordering are compatible with the \(G \)-action.
Properties of this decomposition

1. G acts on P via $gF := g^\dagger Fg$.
2. Partial ordering on the minimal classes:
 $C \preceq C' \iff SL(C) \subset SL(C')$.
3. The decomposition as well as the partial ordering are compatible with the G-action.
4. We have $\overline{C} = \bigcup_{C \preceq C'} C'$.
Properties of this decomposition

1. G acts on P via $gF := g^\dagger Fg$.
2. Partial ordering on the minimal classes: $C \leq C' \iff S_L(C) \subset S_L(C')$.
3. The decomposition as well as the partial ordering are compatible with the G-action.
4. We have $\overline{C} = \bigcup_{C \leq C'} C'$.

The cellular chain complex

The decomposition yields an acyclic chain complex C, where C_n is the free Abelian group on the minimal classes in dimension n. C_n becomes a G-module by means of the G-action.
Problem: The modules C_n are not necessarily free.
Problem: The modules C_n are not necessarily free.

Perturbations (C. T. C. Wall 1960)

Assume we are given a free $\mathbb{Z}G$-resolution $A_{p,*}$ (boundary d_0) of C_p for all p. Then there are homomorphisms $d_k : A_{p,q} \to A_{p-k,q+k-1}$, such that

$$d := d_0 + d_1 + d_2 + \ldots : R_n := \bigoplus_{p+q=n} A_{p,q} \to R_{n-1} := \bigoplus_{p+q=n-1} A_{p+q}$$

is the boundary of an acyclic chain complex of free $\mathbb{Z}G$-modules, where $H_0(R) \cong \mathbb{Z}$.
A Diagramm:

\[\cdots \xrightarrow{\partial} C_2 \xrightarrow{\partial} C_1 \xrightarrow{\partial} C_0 \xrightarrow{} H_0(C) \]
A Diagramm:

\[
\begin{array}{ccc}
\cdots & A_{2,1} & A_{1,1} & A_{0,1} \\
\downarrow & d_0 & d_0 & d_0 \\
\cdots & A_{2,0} & A_{1,0} & A_{0,0} \\
\downarrow & \epsilon & \epsilon & \epsilon \\
\cdots & \partial & \partial & \partial & \partial & \partial \\
\downarrow & & & & & \downarrow \\
\cdots & C_2 & C_1 & C_0 & H_0(C) \\
\end{array}
\]
A Diagramm:

\[
\begin{array}{ccc}
\cdots & A_{2,1} & A_{1,1} & A_{0,1} \\
\downarrow d_0 & \downarrow d_0 & \downarrow d_0 & \downarrow d_0 \\
A_{2,0} & A_{1,0} & A_{0,0} & A_0 \\
\downarrow & \downarrow \epsilon & \downarrow \epsilon & \downarrow \epsilon \\
\cdots & C_2 & C_1 & C_0 & H_0(C)
\end{array}
\]
A Diagramm:

\[
\begin{array}{ccc}
\vdots & \vdots & \vdots \\
A_2,1 & A_1,1 & A_0,1 \\
\downarrow & \downarrow & \downarrow \\
A_2,0 & A_1,0 & A_0,0 \\
\downarrow & \downarrow & \downarrow \\
C_2 & C_1 & C_0 \\
\downarrow & \downarrow & \downarrow \\
\partial & \partial & \partial \\
\downarrow & \downarrow & \downarrow \\
H_0(C) & \\
\end{array}
\]
The situation in the space of positive definite forms:
Let \((C_k,i)_i\) be a system of representatives of the \(G\)-orbits of minimal classes and \(S_{k,i} := \text{Stab}_G(C_k,i)\).
The situation in the space of positive definite forms:
Let \((C_k,i)\) be a system of representatives of the \(G\)-orbits of minimal classes and \(S_{k,i} := \text{Stab}_G(C_k,i)\).
Then:
\[
C_k \cong \bigoplus_i \mathbb{Z} G \otimes \mathbb{Z} S_{k,i} \mathbb{Z} \chi_{k,i}
\]
\((\chi_{k,i}(s) \in \{\pm 1\} \text{ describes how } s \text{ acts on the orientation of the cell.})\)
The situation in the space of positive definite forms:
Let $(C_k,i)_i$ be a system of representatives of the G-orbits of minimal classes and $S_{k,i} := \text{Stab}_G(C_k,i)$.

Then:

$$C_k \cong \bigoplus_i \mathbb{Z}G \otimes \mathbb{Z}S_{k,i} \mathbb{Z}^{\chi_{k,i}}$$

$(\chi_{k,i}(s) \in \{\pm 1\}$ describes how s acts on the orientation of the cell.)

Hence we need $\mathbb{Z}S_{k,i}$-resolutions of \mathbb{Z}, to get the algorithm running.
The situation in the space of positive definite forms:

Let $(C_k,i)_i$ be a system of representatives of the G-orbits of minimal classes and $S_{k,i} := \text{Stab}_G(C_k,i)$.

Then:

$$C_k \cong \bigoplus_i \mathbb{Z} G \otimes \mathbb{Z} S_{k,i} \mathbb{Z} \chi_{k,i}$$

($\chi_{k,i}(s) \in \{\pm 1\}$ describes how s acts on the orientation of the cell.)

Hence we need $\mathbb{Z} S_{k,i}$-resolutions of \mathbb{Z}, to get the algorithm running.

Problem: $S_{k,i}$ is an infinite group for some classes.
Solution: Consider a certain retract of P
Solution: Consider a certain retract of \mathbb{P}

Definition: well-rounded

- $F \in \mathbb{P}$ is called *well-rounded*, if $S_L(F)$ contains a D-Basis of D^n.
Solution: Consider a certain retract of P.

Definition: well-rounded

- $F \in P$ is called *well-rounded*, if $S_L(F)$ contains a D-Basis of D^n.
- $P_{\leq 1}^{wr} := \{ F \in P \mid F \text{ well-rounded}, \min_L(F) = 1 \}$.
Solution: Consider a certain retract of P

Definition: well-rounded

- $F \in P$ is called *well-rounded*, if $S_L(F)$ contains a D-Basis of D^n.
- $P_{\geq 1}^{wr} := \{ F \in P \mid F$ well-rounded, $\min_L(F) = 1 \}$.

Properties of the well-rounded retract

In $P_{\geq 1}^{wr}$ we have:
Solution: Consider a certain retract of \mathbb{P}

Definition: well-rounded

- $F \in \mathbb{P}$ is called well-rounded, if $S_L(F)$ contains a D-Basis of D^n.
- $\mathbb{P}_{\geq 1}^{wr} := \{ F \in \mathbb{P} \mid F$ well-rounded, $\min L(F) = 1 \}$.

Properties of the well-rounded retract

In $\mathbb{P}_{\geq 1}^{wr}$ we have:
- There are only finitely many G-orbits in any dimension and every stabilizer is finite.
Solution: Consider a certain retract of P

Definition: well-rounded

- $F \in P$ is called **well-rounded**, if $S_L(F)$ contains a D-Basis of D^n.
- $P_{\geq 1}^{wr} := \{ F \in P \mid F \text{ well-rounded }, \min_L(F) = 1 \}$.

Properties of the well-rounded retract

In $P_{\geq 1}^{wr}$ we have:

- There are only finitely many G-orbits in any dimension and every stabilizer is finite.
- The topological closure of each cell is a polytope.
Solution: Consider a certain retract of \mathbb{P}

Definition: well-rounded

- $F \in \mathbb{P}$ is called *well-rounded*, if $S_L(F)$ contains a D-Basis of D^n.
- $\mathbb{P}^{wr}_{\geq 1} := \{ F \in \mathbb{P} \mid F$ well-rounded , $\min L(F) = 1 \}$.

Properties of the well-rounded retract

In $\mathbb{P}^{wr}_{\geq 1}$ we have:

- There are only finitely many G-orbits in any dimension and every stabilizer is finite.
- The topological closure of each cell is a polytope.
- $\mathbb{P}^{wr}_{\geq 1}$ is a retract of \mathbb{P}, especially we have that the cellular chain complex is again acyclic and $H_0 \cong \mathbb{Z}$ (A. Ash 1984).
The Well-Rounded-Retract for $SL_2(\mathbb{Z})$

Quelle: http://www.uncg.edu/mat/numbertheory/quadratic_form.html
Übersicht

1 Some Definitions

2 Resolutions for Unit Groups of Orders
 - Quadratic Forms
 - Perturbations
 - The Well-Rounded Retract

3 Computational Example
 - $\mathbb{Q}(\sqrt{-5})$
$D := \mathbb{Q}(\sqrt{-5}), \ A := D^2 \times 2, \ R := \mathbb{Z} [\sqrt{-5}]$.

$\mathcal{O}_i := \text{End}_R(L_i)$ mit $L_1 := R^2, \ L_2 := R \oplus \wp$ mit $\wp^2 = (2)$.

Especially:

$G_1 \nmid G_2$.

Sebastian Schönnenbeck
$D := \mathbb{Q}(\sqrt{-5})$, $A := D^{2 \times 2}$, $R := \mathbb{Z}[\sqrt{-5}]$.
\[\mathcal{O}_i := \text{End}_R(L_i) \text{ mit } L_1 := R^2, \ L_2 := R \oplus \wp \text{ mit } \wp^2 = (2). \]

1. $G_1 := \text{GL}(L_1)$:

\[
H_n(G_1, \mathbb{Z}) = \begin{cases}
C_2^5 & n = 1 \\
C_4^2 \times C_{12} \times \mathbb{Z} & n = 2 \\
C_8^8 \times C_{24} & n = 3 \\
C_2^7 & n = 4
\end{cases}
\]
Some Definitions

Resolutions for Unit Groups of Orders

Computational Example

$D := \mathbb{Q}(\sqrt{-5}), A := D^{2 \times 2}, R := \mathbb{Z} \left[\sqrt{-5} \right].$

$\mathcal{O}_i := \text{End}_R(L_i)$ mit $L_1 := R^2, L_2 := R \oplus \wp$ mit $\wp^2 = (2).$

1. $G_1 := \text{GL}(L_1):$

$$H_n(G_1, \mathbb{Z}) = \begin{cases} C_2^n & n = 1 \\ C_4^2 \times C_{12} \times \mathbb{Z} & n = 2 \\ C_8^2 \times C_{24} & n = 3 \\ C_7^2 & n = 4 \end{cases}$$

2. $G_2 := \text{GL}(L_2):$

$$H_n(G_2, \mathbb{Z}) = \begin{cases} C_3^3 & n = 1 \\ C_2^2 \times C_{12} \times \mathbb{Z} & n = 2 \\ C_8^2 \times C_{24} & n = 3 \\ C_7^2 & n = 4 \end{cases}$$
Some Definitions

Resolutions for Unit Groups of Orders

Computational Example

\(D := \mathbb{Q}(\sqrt{-5}) \), \(A := D^{2 \times 2} \), \(R := \mathbb{Z} \left[\sqrt{-5} \right] \).

\(\mathcal{O}_i := \text{End}_R(L_i) \) mit \(L_1 := R^2 \), \(L_2 := R \oplus \phi \) mit \(\phi^2 = (2) \).

1. \(G_1 := \text{GL}(L_1) \):

\[
H_n(G_1, \mathbb{Z}) = \begin{cases}
C_2^5 & n = 1 \\
C_4^2 \times C_{12} \times \mathbb{Z} & n = 2 \\
C_8^8 \times C_{24} & n = 3 \\
C_2^7 & n = 4
\end{cases}
\]

2. \(G_2 := \text{GL}(L_2) \):

\[
H_n(G_2, \mathbb{Z}) = \begin{cases}
C_2^3 & n = 1 \\
C_2^2 \times C_{12} \times \mathbb{Z} & n = 2 \\
C_8^8 \times C_{24} & n = 3 \\
C_2^7 & n = 4
\end{cases}
\]

Especially: \(G_1 \not\cong G_2 \).