Lineare Algebra II Beweis von PLESKEN, Bemerkung 5.16

Bemerkung. Es sei $\tilde{\mathcal{V}}$ ein endlich erzeugter reeller Vektorraum und es seien q und \tilde{q} quadratische Formen auf $\tilde{\mathcal{V}}$ so, dass $\operatorname{Null}^p(q) = \operatorname{Null}^p(\tilde{q})$ gilt. Wenn q oder \tilde{q} indefinit ist, dann ist $\tilde{q} = aq$ für ein $a \in \mathbb{R}^{\times}$; insbesondere sind dann also q und \tilde{q} beide indefinit.

Beweis. Es sei o.B.d.A. q indefinit, der andere Fall ist analog. Ferner sei $n := \text{Dim } \mathcal{P}(\tilde{\mathcal{V}})$, es sei (n_+, n_-, n_0) die Signatur der Polarisation Ψ_q und es seien $I_+ := \{0, \dots, n_+ - 1\}$, $I_- := \{n_+, \dots, n_+ + n_- - 1\}$ und $I_0 := \{n_+ + n_-, \dots, n\}$. Nach Proposition (1.46) gibt es dann eine Basis $B = (B_0, \dots, B_n)$ mit

$${}_{B}\Psi_{q}{}^{B} = \begin{pmatrix} \mathbf{I}_{n_{+}} & & \\ & \mathbf{I}_{n_{-}} & \\ & & 0 \end{pmatrix}.$$

Es sei $a := \tilde{q}(B_0)$. Wir wollen zeigen, dass

$${}_{B}\Psi_{\tilde{q}}{}^{B} = \begin{pmatrix} a\mathbf{I}_{n_{+}} & & \\ & a\mathbf{I}_{n_{-}} & \\ & & 0 \end{pmatrix}$$

gilt. Hierzu betrachten wir geeignete Elemente von $\operatorname{Null}^p(q) = \operatorname{Null}^p(\tilde{q})$. Da B eine Orthogonalbasis von $\tilde{\mathcal{V}}$ ist, gilt zunächst

$$q(\sum_{i=0}^{n} a_i B_i) = \sum_{i=0}^{n} q(a_i B_i) = \sum_{i=0}^{n} a_i^2 q(B_i) = \sum_{i=0}^{n_+-1} a_i^2 - \sum_{i=n_+}^{n_++n_--1} a_i^2$$

für alle $a_i \in \mathbb{R}, i \in \{0, ..., n\}$. Wir zeigen nun die behauptete Gleichheit in fünf Schritten:

(a) Als erstes haben wir $q(B_{i_+} + B_{i_-}) = 0$ und $q(B_{i_+} - B_{i_-}) = 0$ für $i_+ \in I_+$, $i_- \in I_-$, also auch

$$0 = \tilde{q}(B_{i_{+}} + B_{i_{-}}) = \tilde{q}(B_{i_{+}}) + 2\Psi_{\tilde{q}}(B_{i_{+}}, B_{i_{-}}) + \tilde{q}(B_{i_{-}})$$

sowie analog $\tilde{q}(B_{i_+}) - 2\Psi_{\tilde{q}}(B_{i_+}, B_{i_-}) + \tilde{q}(B_{i_-}) = 0$. Dies impliziert $\Psi_{\tilde{q}}(B_{i_+}, B_{i_-}) = 0$ und $\tilde{q}(B_{i_-}) = -\tilde{q}(B_{i_+})$ für $i_+ \in I_+$, $i_- \in I_-$. Insbesondere folgt $\tilde{q}(B_{i_-}) = -\tilde{q}(B_0) = -a$ für $i_- \in I_-$ und damit $\tilde{q}(B_{i_+}) = -\tilde{q}(B_{n_+}) = a$ für $i_+ \in I_+$.

- (b) Für $i_0 \in I_0$ gilt $q(B_{i_0}) = 0$, also auch $\tilde{q}(B_{i_0}) = 0$.
- (c) Als nächstes haben wir $q(B_{i_{+}} + B_{i_{-}} + B_{i_{0}}) = 0$ und $q(B_{i_{+}} B_{i_{-}} + B_{i_{0}}) = 0$ für $i_{+} \in I_{+}$, $i_{-} \in I_{-}$ und $i_{0} \in I_{0}$, also auch

$$\begin{split} 0 &= \tilde{q}(B_{i_+} + B_{i_-} + B_{i_0}) = \tilde{q}(B_{i_+}) + \tilde{q}(B_{i_-}) + \tilde{q}(B_{i_0}) + 2\Psi_{\tilde{q}}(B_{i_+}, B_{i_-}) + 2\Psi_{\tilde{q}}(B_{i_+}, B_{i_0}) + 2\Psi_{\tilde{q}}(B_{i_-}, B_{i_0}) \\ &= 2(\Psi_{\tilde{q}}(B_{i_+}, B_{i_0}) + \Psi_{\tilde{q}}(B_{i_-}, B_{i_0})) \end{split}$$

sowie analog $2(\Psi_{\tilde{q}}(B_{i_+}, B_{i_0}) - \Psi_{\tilde{q}}(B_{i_-}, B_{i_0})) = 0$. Es folgt $\Psi_{\tilde{q}}(B_{i_+}, B_{i_0}) = 0$ und $\Psi_{\tilde{q}}(B_{i_-}, B_{i_0}) = 0$ für $i_+ \in I_+$, $i_- \in I_-$ und $i_0 \in I_0$.

(d) Weiter ist $q(B_{i_+} + B_{j_+} + \sqrt{2}B_{n_+}) = 0$ für $i_+, j_+ \in I_+$ mit $i_+ \neq j_+$, also auch

$$\begin{split} 0 &= \tilde{q}(B_{i_{+}} + B_{j_{+}} + \sqrt{2}B_{n_{+}}) \\ &= \tilde{q}(B_{i_{+}}) + \tilde{q}(B_{j_{+}}) + 2\tilde{q}(B_{n_{+}}) + 2\Psi_{\tilde{q}}(B_{i_{+}}, B_{j_{+}}) + 2\sqrt{2}\Psi_{\tilde{q}}(B_{i_{+}}, B_{n_{+}}) + 2\sqrt{2}\Psi_{\tilde{q}}(B_{j_{+}}, B_{n_{+}}) \\ &= 2\Psi_{\tilde{q}}(B_{i_{+}}, B_{j_{+}}) \end{split}$$

und damit $\Psi_{\tilde{q}}(B_{i_+}, B_{j_+}) = 0$. Analog haben wir $\Psi_{\tilde{q}}(B_{i_-}, B_{j_-}) = 0$ für $i_-, j_- \in I_-$ mit $i_- \neq j_-$.

(e) Schließlich gilt $q(B_{i_0}+B_{j_0})=0$ für $i_0,j_0\in I_0$ mit $i_0\neq j_0,$ also auch

$$0 = \tilde{q}(B_{i_0} + B_{j_0}) = \tilde{q}(B_{i_0}) + 2\Psi_{\tilde{q}}(B_{i_0}, B_{j_0}) + \tilde{q}(B_{j_0}) = 2\Psi_{\tilde{q}}(B_{i_0}, B_{j_0})$$

und damit $\Psi_{\tilde{q}}(B_{i_0}, B_{j_0}) = 0.$

Insgesamt haben wir in der Tat

$$_{B}\Psi_{\tilde{q}}{}^{B} = \begin{pmatrix} a\mathbf{I}_{n_{+}} & & \\ & a\mathbf{I}_{n_{-}} & \\ & & 0 \end{pmatrix} = a\begin{pmatrix} \mathbf{I}_{n_{+}} & & \\ & \mathbf{I}_{n_{-}} & \\ & & 0 \end{pmatrix} = a_{B}\Psi_{q}{}^{B} = {}_{B}a\Psi_{q}{}^{B} = {}_{B}\Psi_{q}{}^{B},$$

also auch $\tilde{q}=aq$. Wegen $q\neq 0$ und $\mathrm{Null^p}(q)=\mathrm{Null^p}(\tilde{q})$ ist ferner auch $\tilde{q}\neq 0$ und damit insbesondere $a\neq 0$, d.h. $a\in\mathbb{R}^\times$.