Lineare Algebra II Klausur (1. Termin)

Aufgabe 1 (16 Punkte). Es sei $\mathcal{U} \leq \mathbb{F}_3^{4 \times 1}$ definiert durch

$$\mathcal{U} := \langle \begin{pmatrix} -1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\0\\-1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix} \rangle$$

und es sei $A \in \mathbb{F}_3^{4 \times 4}$ definiert durch

$$A := \begin{pmatrix} -1 & 1 & 1 & -1 \\ 1 & -1 & 1 & 0 \\ 1 & 1 & -1 & -1 \\ -1 & 0 & -1 & 1 \end{pmatrix}.$$

Ferner sei $\Phi \colon \mathbb{F}_3^{4 \times 1} \times \mathbb{F}_3^{4 \times 1} \to \mathbb{F}_3, (x, y) \mapsto x^{\operatorname{tr}} A y$ die durch A definierte symmetrische Bilinearform auf $\mathbb{F}_3^{4 \times 1}$.

- (a) Berechnen Sie eine Basis von \mathcal{U}^{\perp} .
- (b) Berechnen Sie eine Orthogonalbasis von $\mathbb{F}_3^{4\times 1}$ bzgl. Φ .
- (c) Ist Φ ausgeartet? Berechnen Sie eine Basis des Radikals $(\mathbb{F}_3^{4\times 1})^{\perp}$ bzgl. Φ .
- (d) Bestimmen Sie eine Basis von $\mathbb{F}_3^{4\times 1}/(\mathbb{F}_3^{4\times 1})^{\perp}$.

Geben Sie Ihre Ergebnisse so an, dass die Vertreter der Elemente in \mathbb{F}_3 in $\{-1,0,1\}$ sind.

Aufgabe 2 (12 Punkte). Es seien Permutationen $\pi, \sigma \in S_9$ gegeben durch $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 2 & 4 & 6 & 8 & 5 & 7 & 3 & 1 \end{pmatrix}$ und $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 4 & 1 & 2 & 5 & 6 & 9 & 7 & 8 \end{pmatrix}$.

- (a) Schreiben Sie π und σ in Zykelschreibweise.
- (b) Berechnen Sie σ^{-1} .
- (c) Berechnen Sie $\pi^5 \circ \sigma^2$.
- (d) Berechnen Sie sign $(\pi \circ \sigma \circ \pi)$.
- (e) Geben Sie alle Elemente von S_3 mit Signum 1 an.
- (f) Bestimmen Sie die Bahn von $(1,2,3) \in S_4$ unter der Konjugationsoperation von S_4 .
- (g) Berechnen Sie den Stabilisator von $(1,2,3) \in S_3$ unter der Konjugationsoperation von S_3 .

Geben Sie alle Ergebnisse in Zykelschreibweise an.

Aufgabe 3 (7 Punkte). Es sei G eine Gruppe und $x \in G$. Zeigen Sie, dass $C := \{g \in G \mid gx = xg\}$ eine Untergruppe von G ist.

Aufgabe 4 (16 Punkte). Es seien $P_i, Q_j \in \mathcal{P}_4(\mathbb{R})$ für $i \in \{1, 2, 3, 4, 5\}, j \in \{1, 2, 3, 4\},$ definiert durch

$$\begin{array}{ll} P_1 := (1:2:-2:1:0), & P_2 := (0:-1:-3:2:1), & P_3 := (1:1:-5:4:-1), \\ P_4 := (-1:3:-1:1:3), & P_5 := (-1:1:11:-8:-1), \\ Q_1 := (2:7:5:-4:-3), & Q_2 := (4:11:1:-2:-3), & Q_3 := (0:0:0:2:4), \\ Q_4 := (0:0:0:3:2), & Q_4 := (0:0:0:3:2), & Q_5 := (0:0:0:2:4), \end{array}$$

und es seien $\mathcal{U} := \langle P_1, P_2, P_3, P_4, P_5 \rangle_{\mathbf{p}}$ und $\mathcal{W} := \langle Q_1, Q_2, Q_3, Q_4 \rangle_{\mathbf{p}}$ projektive Unterräume von $\mathcal{P}_4(\mathbb{R})$.

- (a) Berechnen Sie das Doppelverhältnis $DV(P_1, P_2, Q_1, Q_2)$.
- (b) Bestimmen Sie eine projektive Basis von \mathcal{U} . Welche Dimension hat \mathcal{U} ?
- (c) Bestimmen Sie eine projektive Basis von $\mathcal{U} \cap \mathcal{W}$.

Aufgabe 5 (7 Punkte). Es seien K ein Körper und A ein affiner Raum über K und es seien Punkte $A, B, C, D \in A$ gegeben. Zeigen Sie, dass $\overrightarrow{AB} = \overrightarrow{CD}$ genau dann gilt, wenn $\overrightarrow{AC} = \overrightarrow{BD}$ ist.

Aufgabe 6 (22 Punkte). Es sei $A \in \mathbb{F}_3^{4 \times 4}$ gegeben durch

$$A:=\begin{pmatrix}0&1&1&1\\1&0&1&1\\0&0&0&1\\0&0&1&0\end{pmatrix}.$$

- (a) Bestimmen Sie die Smith-Normalform von $XI_4 A$.
- (b) Bestimmen Sie die Frobenius-Normalform von A.
- (c) Bestimmen Sie die Jordan-Normalform von A.
- (d) Bestimmen Sie das Minimalpolynom von A.

Geben Sie Ihre Ergebnisse so an, dass die Vertreter der Elemente in \mathbb{F}_3 in $\{-1,0,1\}$ sind.

Aufgabe 7 (12 Punkte).

- (a) Bestimmen Sie ein Vertretersystem der Ähnlichkeitsklassen derjenigen Matrizen in $\mathbb{C}^{7\times7}$, deren charakteristisches Polynom gleich $(X-3)^3(X+3)^2(X-1)(X+1)$ ist und deren Minimalpolynom Grad 6 hat.
- (b) Bestimmen Sie die Anzahl der Isomorphietypen abelscher Gruppen von Ordnung 100.

Aufgabe 8 (8 Punkte). Es seien R ein kommutativer Ring mit Einselement und M ein R-Modul. Zeigen Sie, dass $R \otimes_R M \cong M$ ist.