Lineare Algebra II Klausur (2. Termin)

Aufgabe 1 (16 Punkte). Es sei $\mathcal{U} \leq \mathbb{F}_3^{4 \times 1}$ definiert durch

$$\mathcal{U} := \langle \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix} \rangle$$

und es sei $A \in \mathbb{F}_3^{4 \times 4}$ definiert durch

$$A := \begin{pmatrix} 1 & -1 & 1 & 0 \\ -1 & 0 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

Ferner sei $\Phi \colon \mathbb{F}_3^{4 \times 1} \times \mathbb{F}_3^{4 \times 1} \to \mathbb{F}_3, (x, y) \mapsto x^{\operatorname{tr}} A y$ die durch A definierte symmetrische Bilinearform auf $\mathbb{F}_3^{4 \times 1}$.

- (a) Berechnen Sie eine Basis von \mathcal{U}^{\perp} .
- (b) Berechnen Sie eine Orthogonalbasis von $\mathbb{F}_3^{4\times 1}$ bzgl. Φ .
- (c) Ist Φ ausgeartet? Berechnen Sie eine Basis des Radikals $(\mathbb{F}_3^{4\times 1})^{\perp}$ bzgl. Φ .
- (d) Bestimmen Sie eine Basis von $\mathcal{U}/((\mathbb{F}_3^{4\times 1})^{\perp}\cap\mathcal{U})$

Geben Sie Ihre Ergebnisse so an, dass die Vertreter der Elemente in \mathbb{F}_3 in $\{-1,0,1\}$ sind.

Aufgabe 2 (12 Punkte). Es seien Permutationen $\pi, \sigma \in S_9$ gegeben durch $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 1 & 4 & 6 & 9 & 7 & 5 & 8 & 3 \end{pmatrix}$ und $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 5 & 2 & 1 & 9 & 7 & 8 & 6 & 4 \end{pmatrix}$.

- (a) Schreiben Sie π und σ in Zykelschreibweise.
- (b) Berechnen Sie σ^{-1} .
- (c) Berechnen Sie $\pi^6 \circ \sigma^3$.
- (d) Berechnen Sie sign $(\pi \circ \sigma \circ \pi^{-1})$.
- (e) Geben Sie alle Elemente von S_3 mit Signum -1 an.
- (f) Bestimmen Sie die Bahn von (2,3,4) unter der Konjugationsoperation auf S₄.
- (g) Berechnen Sie den Stabilisator von (1, 2) unter der Konjugationsoperation auf S₃.

Geben Sie alle Ergebnisse in Zykelschreibweise an.

Aufgabe 3 (7 Punkte). Es sei G eine Gruppe. Zeigen Sie, dass $Z := \{g \in G \mid gx = xg \text{ für alle } x \in G\}$ eine abelsche Untergruppe von G ist.

Aufgabe 4 (16 Punkte). Wir betrachten den \mathbb{R} -Vektorraum $\mathbb{R}^{2\times 2}$ als euklidischen Vektorraum, versehen mit dem Skalarprodukt

$$\Phi \colon \mathbb{R}^{2 \times 2} \times \mathbb{R}^{2 \times 2} \to \mathbb{R}, (X, Y) \mapsto \operatorname{Spur}(X^{\operatorname{tr}}Y).$$

Es sei $A := \{ A \in \mathbb{R}^{2 \times 2} \mid A_{2,2} = 1 \}.$

- (a) Zeigen Sie, dass \mathcal{A} ein euklidischer affiner Raum ist. Bestimmen Sie $\mathcal{T}(\mathcal{A})$ und die Operation von $\mathcal{T}(\mathcal{A})$ auf \mathcal{A} . Welche Dimension hat \mathcal{A} ?
- (b) Berechnen Sie das Teilverhältnis

$$TV\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 4 & -\frac{3}{2} \\ \frac{7}{2} & 1 \end{pmatrix}).$$

(c) Bestimmen Sie eine affine Basis des affinen Unterraums

$$\mathcal{U}:=\langle\begin{pmatrix}1&0\\-1&1\end{pmatrix},\begin{pmatrix}3&-1\\2&1\end{pmatrix},\begin{pmatrix}4&2\\0&1\end{pmatrix},\begin{pmatrix}2&3\\-3&1\end{pmatrix}\rangle_a$$

von \mathcal{A} . Welche Dimension hat \mathcal{U} ?

(d) Bestimmen Sie den Abstand von \mathcal{U} aus (c) und $A \in \mathcal{A}$ definiert durch

$$A := \begin{pmatrix} 2 & 2 \\ -5 & 1 \end{pmatrix}.$$

Aufgabe 5 (7 Punkte). Es seien K ein Körper und A ein affiner Raum über K. Ferner seien affine Unterräume \mathcal{U} und \mathcal{W} von A und Punkte $P, P' \in \mathcal{U}$ und $Q, Q' \in \mathcal{W}$ gegeben. Zeigen Sie, dass $\overrightarrow{PQ} - \overrightarrow{P'Q'} \in \mathcal{T}(\mathcal{U}) + \mathcal{T}(\mathcal{W})$ ist.

Aufgabe 6 (22 Punkte). Es sei $A \in \mathbb{F}_3^{4 \times 4}$ gegeben durch

$$A := \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

- (a) Bestimmen Sie die Smith-Normalform von $XI_4 A$.
- (b) Bestimmen Sie die Frobenius-Normalform von A.
- (c) Bestimmen Sie die Jordan-Normalform von A.
- (d) Bestimmen Sie das Minimalpolynom von A.

Geben Sie Ihre Ergebnisse so an, dass die Vertreter der Elemente in \mathbb{F}_3 in $\{-1,0,1\}$ sind.

Aufgabe 7 (12 Punkte).

- (a) Bestimmen Sie die Anzahl der Ähnlichkeitsklassen derjenigen Matrizen in $\mathbb{Q}^{7\times7}$, deren charakteristisches Polynom gleich $(X-1)^4(X+1)^3$ ist.
- (b) Bestimmen Sie alle Isomorphietypen abelscher Gruppen von Ordnung 1500.

Aufgabe 8 (8 Punkte). Es sei R ein kommutativer Ring mit Einselement und es seien M und N Moduln über R. Zeigen Sie, dass $M \otimes_R N \cong N \otimes_R M$ ist.