Sebastian Thomas SS 2012

Vorkurs zur linearen Algebra Übungsblatt 1

Aufgabe 1 (Mengenoperation). Es seien $X := \{1, 2, 3\}, Y := \{6, 3, 2, 5\}, Z := \{5, 3, 1\}.$

- (a) Bestimmen Sie $X \cap Y$, $X \cap Z$ und $X \cap Y \cap Z$.
- (b) Bestimmen Sie $X \cup Y$, $Y \cup Z$ und $X \cup Y \cup Z$.
- (c) Bestimmen Sie $X \cup (Y \cap Z)$ und $X \cap (Y \cup Z)$.
- (d) Bestimmen Sie $Y \setminus X$, $Y \setminus Z$, $Z \setminus X$ und $X \setminus (Y \cup Z)$.
- (e) Bestimmen Sie $X \times Z$ und $(Z \times X) \setminus (X \times Z)$.

Aufgabe 2 (Potenzmenge). Bestimmen Sie $Pot(\emptyset)$, $Pot(Pot(\emptyset))$ und $Pot(Pot(Pot(\emptyset)))$.

Aufgabe 3 (Rechenregeln für Schnitt und Vereinigung). Zeigen Sie:

- (a) Es ist $X \cap (Y \cap Z) = (X \cap Y) \cap Z$ und $X \cup (Y \cup Z) = (X \cup Y) \cup Z$ für alle Mengen X, Y, Z.
- (b) Es ist $X \cap Y = Y \cap X$ und $X \cup Y = Y \cup X$ für alle Mengen X, Y.
- (c) Es ist $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$ und $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$ für alle Mengen X, Y, Z.

Aufgabe 4 (de Morgan'sche Regeln). Es sei X eine Menge und es seien $U, V \subseteq X$. Zeigen Sie, dass $X \setminus (U \cap V) = (X \setminus U) \cup (X \setminus V)$ und $X \setminus (U \cup V) = (X \setminus U) \cap (X \setminus V)$ gilt.

Aufgabe 5 (Russellsche Antinomie). Es sei φ eine Eigenschaft. Wenn es eine Menge gibt, welche aus genau denjenigen Objekten besteht, die φ erfüllen, so sagen wir, dass die Menge $\{x \mid x \text{ erfüllt } \varphi\}$ existiert. Wenn es keine solche Menge gibt, so sagen wir, dass $\{x \mid x \text{ erfüllt } \varphi\}$ keine Menge ist. Zeigen Sie:

- (a) Es ist $\{x \mid x \text{ ist eine Menge und } x \notin x\}$ keine Menge.
- (b) Für jede Menge X ist $\{x \in X \mid x \text{ ist eine Menge und } x \notin x\} \notin X$.
- (c) Es ist $\{x \mid x \text{ ist eine Menge}\}$ keine Menge.