Sebastian Thomas SS 2012

Vorkurs zur linearen Algebra Übungsblatt 2

Aufgabe 6 (Abbildungen).

- (a) Liefert $f := \{(2,3), (1,2)\}$ eine Abbildung von $\{1,2,3\}$ nach $\{1,2,3\}$?
- (b) Liefert $f := \{(1,2), (2,3), (3,3)\}$ eine Abbildung von $\{1,2,3\}$ nach $\{2,3,4\}$?
- (c) Liefert $f := \{(1,1), (2,3), (3,2)\}$ eine Abbildung von $\{1,2\}$ nach $\{1,3\}$?
- (d) Liefert $f := \{(x, x+3) \mid x \in \{1, 2, 3\}\}$ eine Abbildung von $\{1, 2, 3\}$ nach $\{4, 5, 6\}$?
- (e) Liefert $f := \{(y+3,y) \mid y \in \{1,2,3\}\}$ eine Abbildung von $\{4,5,6\}$ nach $\{1,2,3\}$?

Aufgabe 7 (Abbildungen). Es sei X eine Menge. Bestimmen Sie Map (\emptyset, X) und Map (X, \emptyset) .

Aufgabe 8 (Komposita). Bestimmen Sie für folgende Abbildungen $q \circ f$ und/oder $f \circ q$, sofern definiert.

- (a) Es seien $f: \mathbb{R} \to \mathbb{R}_{>0}$, $x \mapsto (x+1)^2$ und $g: \mathbb{R} \to \mathbb{R}$, $y \mapsto y-1$.
- (b) Es seien $f: \{1,2,3\} \to \{1,2\}, 1 \mapsto 1, 2 \mapsto 1, 3 \mapsto 2 \text{ und } g: \{1,2\} \mapsto \mathbb{N}_0, 1 \mapsto 0, 2 \mapsto 100.$
- (c) Es seien $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$, $n \mapsto (n-1,2)$ und $g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, $(n_1, n_2) \mapsto n_1 + n_2$.

Aufgabe 9 (inverse Abbildung). Zeigen Sie: Es sind $\operatorname{Map}(\{0,1\},\{0,1\}) \to \{0,1,2,3\}, \ b \mapsto b(0) \cdot 2^0 + b(1) \cdot 2^1$ und $\{0,1,2,3\} \to \operatorname{Map}(\{0,1\},\{0,1\}), \ n \mapsto (0 \mapsto n \bmod 2, 1 \mapsto n \operatorname{div} 2)$ zueinander inverse Abbildungen, wobei $n \bmod 2$ den Rest und $n \operatorname{div} 2$ den ganzzahligen Anteil bei Division mit Rest durch 2 bezeichne.

Aufgabe 10 (Injektivität und Surjektivität). Es sei $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$.

- (a) Zeigen Sie, dass f weder injektiv noch surjektiv ist.
- (b) Finden Sie Teilmengen $U, V \subseteq \mathbb{R}$ mit $f(U) \subseteq V$ so, dass $U \to V$, $x \mapsto f(x)$ injektiv, aber nicht surjektiv ist.
- (c) Finden Sie Teilmengen $U, V \subseteq \mathbb{R}$ mit $f(U) \subseteq V$ so, dass $U \to V$, $x \mapsto f(x)$ surjektiv, aber nicht injektiv ist
- (d) Finden Sie Teilmengen $U, V \subseteq \mathbb{R}$ mit $f(U) \subseteq V$ so, dass $U \to V$, $x \mapsto f(x)$ bijektiv ist.

Aufgabe 11 (Injektivität und Surjektivität). Es seien $f: X \to Y$ und $g: Y \to Z$ Abbildungen. Zeigen oder widerlegen Sie:

- (a) Wenn f und g injektiv sind, dann ist $g \circ f$ injektiv. Wenn $g \circ f$ injektiv ist, dann ist f injektiv. Wenn $g \circ f$ injektiv ist, dann ist g injektiv.
- (b) Wenn f und g surjektiv sind, dann ist $g \circ f$ surjektiv. Wenn $g \circ f$ surjektiv ist, dann ist f surjektiv. Wenn $g \circ f$ surjektiv ist, dann ist g surjektiv.
- (c) Wenn f und g bijektiv sind, dann ist $g \circ f$ bijektiv. Wenn $g \circ f$ bijektiv ist, dann ist f bijektiv. Wenn $g \circ f$ bijektiv ist, dann ist g bijektiv.

Aufgabe 12 (Bild, Urbild). Es seien $X := \{1, 2, 3, 4, 5, 6\}$ und $Y := \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, und es sei $f : X \to Y$, $1 \mapsto 2, 2 \mapsto 2, 3 \mapsto 2, 4 \mapsto 5, 5 \mapsto 8, 6 \mapsto 8$. Ist f injektiv? Ist f surjektiv? Bestimmen Sie $f(\{1, 2, 5, 6\})$, $f^{-1}(\{2, 8\})$, $f^{-1}(\{2, 3\})$, $f^{-1}(\{5\})$, $f^{-1}(\{9\})$, f(X) und $f^{-1}(Y)$.

Aufgabe 13 (Invertierbarkeit). Es sei $f \colon X \to Y$ eine Abbildung. Zeigen Sie die Äquivalenz der folgenden Aussagen:

- (a) Es ist f bijektiv.
- (b) Jede Faser von f besitzt genau ein Element.
- (c) Es ist f invertierbar.