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Definitions and notation

A code C of length n over some finite field F is a subspace of
Fn.

Let be a field automorphism of order 1 or 2 and define

(v ,w) :=
n∑

i=1

viwi .

The dual code C⊥ of C is the orthogonal space w.r.t. this
inner product.

If C = C⊥, then C is called (hermitian) self-dual.
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Automorphism group of a code

Full Monomial group of a field: F∗ oSn, acting on coordinates of Fn

(permutation matrices with non-zero entries in F∗ instead of 1)

Problem: this group doesn’t preserve the inner product, especially
self-duality.

Define
U := {α ∈ F | αα = 1} ≤ F∗ .

Then

|U| =


1 if char(F) = 2 and = id
2 if char(F) 6= 2 and = id√
|F |+ 1 if 6= id

 .
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Let
Monn(F) := U o Sn,

then the automorphism group of a code C is

Aut(C ) := {g ∈ Monn(F) | C · g = C}.

Every g ∈ Monn(F) has unique decomposition

g = diag(α1, . . . , αn)π(g), π(g) ∈ Sn, αi ∈ U

and the fixcode of g is

C (g) := {c ∈ C |c · g = c}.

Remark

Let g ∈ Monn(F) be an element of order r such that gcd(r , |U|) =
1. Then g is conjugate in Monn(F) to some element of Sn.
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Theorem (MacWilliams, Mallos, Sloane, Ward, Rains)

Let C be a self-dual code in Fn
q with minimum distance d .

If q = 2 and C is even, then

d ≤
{

4 · bn/24c+ 4 if n 6= 22 (mod 24)
4 · bn/24c+ 6 if n = 22 (mod 24)

}
.

If q = 2 and C is doubly-even, then d ≤ 4 · bn/24c+ 4.

If q = 3, then d ≤ 3 · bn/12c+ 3.

If q = 4 and C is Hermitian self-dual, then d ≤ 2 · bn/6c+ 2.

Definition

Self-dual codes, which achieve those bounds are called extremal.
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If a full classification of self-dual (resp. extremal) codes is not
possible, one tries to classify those codes with given
automorphisms.

Theorem (Huffmann, 1992)

Let C ≤ F36
3 be a ternary, extremal (d = 12) code of length 36

such that |Aut(C )| is divided by some prime p ≥ 5. Then C is
isomorphic to the Pless-Code P36.

Theorem (Nebe, 2011)

Let C ≤ F48
3 be a ternary, extremal (d = 15) code of length 48

such that |Aut(C )| is divided by some prime p ≥ 5. Then C is
isomorphic to the Pless-Code P48 or to the extended quadratic
residue code Q48.
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Decomposition theory of Huffman (1988)

Basic idea of the proofs:

Let C be an F-linear code with an automorphism g of prime order
p 6= char(F).

C is an F[g ]-module, this ring is isomorphic to F[x ]/(xp − 1) and
is the direct sum of field extensions of Fq

→ C is the direct sum of linear codes over those field extension of
smaller lengths.

If C is self-dual: those subcodes are self-dual or pairs are dual to
each other.

What happens if p = char(F)? (motivation: prove the Theorems
for p = 3)

Simon Eisenbarth, Gabriele Nebe Self-Dual Codes over Chain Rings



Decomposition theory of Huffman (1988)

Basic idea of the proofs:

Let C be an F-linear code with an automorphism g of prime order
p 6= char(F).

C is an F[g ]-module, this ring is isomorphic to F[x ]/(xp − 1) and
is the direct sum of field extensions of Fq

→ C is the direct sum of linear codes over those field extension of
smaller lengths.

If C is self-dual: those subcodes are self-dual or pairs are dual to
each other.

What happens if p = char(F)? (motivation: prove the Theorems
for p = 3)

Simon Eisenbarth, Gabriele Nebe Self-Dual Codes over Chain Rings



Decomposition theory of Huffman (1988)

Basic idea of the proofs:

Let C be an F-linear code with an automorphism g of prime order
p 6= char(F).

C is an F[g ]-module, this ring is isomorphic to F[x ]/(xp − 1) and
is the direct sum of field extensions of Fq

→ C is the direct sum of linear codes over those field extension of
smaller lengths.

If C is self-dual: those subcodes are self-dual or pairs are dual to
each other.

What happens if p = char(F)? (motivation: prove the Theorems
for p = 3)

Simon Eisenbarth, Gabriele Nebe Self-Dual Codes over Chain Rings



Decomposition theory of Huffman (1988)

Basic idea of the proofs:

Let C be an F-linear code with an automorphism g of prime order
p 6= char(F).

C is an F[g ]-module, this ring is isomorphic to F[x ]/(xp − 1) and
is the direct sum of field extensions of Fq

→ C is the direct sum of linear codes over those field extension of
smaller lengths.

If C is self-dual: those subcodes are self-dual or pairs are dual to
each other.

What happens if p = char(F)? (motivation: prove the Theorems
for p = 3)

Simon Eisenbarth, Gabriele Nebe Self-Dual Codes over Chain Rings



Let C ≤ Fn be a self-dual code with an automorphism g of order
p = char(F).

The group ring F[g ] ∼= F[x ]/(xp) via x 7→ (1− g) is an Artinian
chain ring with chain of ideals

F[g ] ⊃ 〈(1− g)〉 ⊃ 〈(1− g)2〉 ⊃ · · · ⊃ 〈(1− g)q〉 = {0}.

This chain gives raise to a chain of subcodes:

C ⊃ C · (1− g) ⊃ C · (1− g)2 ⊃ · · · ⊃ C · (1− g)q = {0}.
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Theorem (E.)

Let C ≤ Fn
3 be a ternary, extremal code of length 36 resp. 48 and

let g ∈ Aut(C ) be of order 3. We can assume that

g = (1, 2, 3) . . . (3t − 2, 3t − 1, 3t)(3t + 1) . . . (n).

Then g has no fixpoints (i.e. 3t = n) and C is a free a
F3[g ]-module, i.e. isomorphic to F3[g ]6 resp. to F3[g ]8.
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If g acts without fixpoints on the coordinates, then the map

Fn → F[g ]t , (c1, . . . , cpt) 7→

(
p∑

i=1

cig
i−1, . . . ,

p∑
i=1

c(t−1)p+ig
i−1

)

is a bijection between the self-dual codes in Fn and the self-dual
codes in F[g ]t with respect to an inner product defined later.

(Example: (0, 1, 2, 1, 1, 0) 7→ (g + 2 · g2, 1 + g) ∈ F3[g ]).

What is the structure of self-dual codes over chain rings?
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Self-dual codes over chain rings

Let R be a commutative Artinian chain ring with 1 and let
: R → R be an involution (i.e. automorphism of order 1 or 2).

Let m ≤ R denote the maximal ideal of R, then induces an
involution of the residue field F := R/m.
(if the order on F is 2 we call it Hermitian case)

Fix generator x of m such that

x ≡ εx (mod Rx2), ε ∈ {1,−1}.

Let a ∈ N0, such that

R ⊃ Rx ⊃ Rx2 ⊃ · · · ⊃ Rxa+1 = {0}

is the complete chain of ideals in R.

Simon Eisenbarth, Gabriele Nebe Self-Dual Codes over Chain Rings



Self-dual codes over chain rings

Let R be a commutative Artinian chain ring with 1 and let
: R → R be an involution (i.e. automorphism of order 1 or 2).

Let m ≤ R denote the maximal ideal of R, then induces an
involution of the residue field F := R/m.
(if the order on F is 2 we call it Hermitian case)

Fix generator x of m such that

x ≡ εx (mod Rx2), ε ∈ {1,−1}.

Let a ∈ N0, such that

R ⊃ Rx ⊃ Rx2 ⊃ · · · ⊃ Rxa+1 = {0}

is the complete chain of ideals in R.

Simon Eisenbarth, Gabriele Nebe Self-Dual Codes over Chain Rings



Self-dual codes over chain rings

Let R be a commutative Artinian chain ring with 1 and let
: R → R be an involution (i.e. automorphism of order 1 or 2).

Let m ≤ R denote the maximal ideal of R, then induces an
involution of the residue field F := R/m.
(if the order on F is 2 we call it Hermitian case)

Fix generator x of m such that

x ≡ εx (mod Rx2), ε ∈ {1,−1}.

Let a ∈ N0, such that

R ⊃ Rx ⊃ Rx2 ⊃ · · · ⊃ Rxa+1 = {0}

is the complete chain of ideals in R.

Simon Eisenbarth, Gabriele Nebe Self-Dual Codes over Chain Rings



Example

The group ring F3[g ] carries the involution

{
1 7→ 1
g 7→ g−1

}
.

We have

(1− g) = −(1− g) + (1− g) · (1− g−1)

= −(1− g)− (1− g)2

≡ −(1− g) (mod 〈(1− g)2〉)

→ choose x := (1− g) as generator with ε = −1.
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All indecomposable R-modules:

Sb := Rxb for some 0 ≤ b ≤ a,

where S0 = R is the free module of rank 1 and Sa is the unique
simple R-module.

V := Rt = {(v1, . . . , vt) | vi ∈ R} denotes the free R-module of
rank t.

An R-submodule C of V is called code of length t.

Theorem of Krull, Remak, Schmidt:

C = S t0
0 ⊕ S t1

1 ⊕ · · · ⊕ S ta
a .
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Define (Hermitian) inner product

〈·, ·〉 : V × V → R, 〈v ,w〉 :=
t∑

j=1

vjwj .

Now let C = C⊥ be a self-dual code which is a free R-module, i.e.
C ∼= Rt/2. Then the subcodes

C (i) := Cx i ∼= S
t/2
i

form the following chain:
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V

C (a)⊥

C (1)⊥

C = C⊥

C (1)

C (2)

C (a)

C (a+1) = {0}

What be said about the socle
soc(C ) = C (a) of C?

Assume we know C (i+1), how can
we construct all possible C (i)?
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The socle of C

Multiplication by xa defines an isomorphism between the residue
field F and the socle of R:

ϕ : F = R/Rx
∼−→ Rxa = Sa, r + Rx 7→ rxa.

This defines an F-linear isomorphism:

π : soc(V ) = Vxa → Ft , (v1, . . . , vt) 7→ (ϕ−1(v1), . . . , ϕ−1(vt))

What does that mean?

The socle C (a) is generated by some matrix Mxa, where M ∈ F
t
2
×t

generates a self-dual code in Ft (only true if C is a free module, in
general it’s the dual of a self-orthogonal code)

→ those are classified (for moderat length t)
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Example

Let C be an extremal, ternary code of length 36 (resp. 48) with an
automorphism g of order 3 (which is then fixpoint-free).

We choose 1− g as a generator of the maximal ideal in F3[g ].

The socle C · (1− g)2 is the fixcode C (g) and is generated by
some matrix

M ⊗
(
1 1 1

)
,

where M generates a self-dual code in F12
3 (resp. F16

3 ).

We must have d(〈M〉) ≥ 12
3 = 4 (resp. ≥ 15

3 = 5)

→ 〈M〉 is an extremal, ternary code, hence unique.
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The lifting process

Let 0 ≤ i ≤ a and fix some C (i+1).

We want to find all lifts, i.e. all codes D which are self-orthogonal
and Dx = C (i+1).

Define
Wi := C (i+1)⊥x i/C (i+1) ∼= Ft

with the inner product

(·, ·)i : Wi×Wi → F, (Ax i+C (i+1),Bx i+C (i+1))i := ϕ−1(〈A,B〉x i ).

which is well-defined, non-degenerate and Hermitian in the
Hermitian case and ε(i+a)-symmetric otherwise.
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Xi := (soc(V ) + C (i+1))/C (i+1) is a self-dual code in Wi .

C (i)/C (i+1) is self-dual as well and it complements Xi , i.e.

Wi = C (i)/C (i+1) ⊕ Xi .

→ the lifts are given by the complements of Xi .

How does one construct those complements?
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Choose some isotropic complement Yi of Xi in Wi .

There are bases B1 and B2 of Xi resp. Yi such that the Gram
matrix of (·, ·)i w.r.t (B1,B2) is(

0 I
εa+i I 0

)
.

→ all self-dual complements of Xi are given by 〈B2 +B1 ·A〉, where

A ∈ Ft/2×t/2 such that A
tr

+ εa+iA = 0.

(the set of all thoses matrices form a vector space over F)
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Example

We determined the socle C (2) of an extremal, ternary code of
length 36 with an automorphism g of order 3.

Vectorspace of all A ∈ F6×6
3 such that

A
tr

+ εa+iA = 0

⇔ Atr − A = 0

has dimension 21 over F3, the centralizer of g in Aut(C (2)) has 16
orbits on this set, so we have 16 possibilities for C (1).

For these 16 codes we constructed all 315 codes C (0) and have
shown:
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Theorem (Nebe, E.)

Let C be an extremal, ternary code of length 36 with an
automorphism of order 3. Then C is isomorphic to the Pless Code
P36.

Remark

The search spaces for n = 48 has size 336 resp. 328 - I can wait a
few days for a result, but not 10000 years.

If C is a [72, 36, 16]-code with an automorphism g of order 2, then
g has no fixpoints and C is a free F2[g ]-module → there are 41
possibilities for C (1), the search space for C (0) has dimension 171
over F2.
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