Self-Dual Codes over Chain Rings

Simon Eisenbarth, Gabriele Nebe

RWTH Aachen University

20th of June, 2018

PhD-student of Prof. Nebe, RWTH Aachen University (since Oct. 2016)

Projects:
\mathbb{F}_{p}-linear self-dual codes with an automorphism of order p (this talk)
Extremal p-modular lattices with an automorphism of order p (current)
(Relative) projective group ring codes over chain rings

Definitions and notation

A code C of length n over some finite field \mathbb{F} is a subspace of \mathbb{F}^{n}.

Let ${ }^{-}$be a field automorphism of order 1 or 2 and define

$$
(v, w):=\sum_{i=1}^{n} v_{i} \overline{w_{i}} .
$$

The dual code C^{\perp} of C is the orthogonal space w.r.t. this inner product.
If $C=C^{\perp}$, then C is called (hermitian) self-dual.

Automorphism group of a code

Full Monomial group of a field: $\mathbb{F}^{*} 2 S_{n}$, acting on coordinates of \mathbb{F}^{n} (permutation matrices with non-zero entries in \mathbb{F}^{*} instead of 1)

Automorphism group of a code

Full Monomial group of a field: $\mathbb{F}^{*} 2 S_{n}$, acting on coordinates of \mathbb{F}^{n} (permutation matrices with non-zero entries in \mathbb{F}^{*} instead of 1)
Problem: this group doesn't preserve the inner product, especially self-duality.

Automorphism group of a code

Full Monomial group of a field: $\mathbb{F}^{*}<S_{n}$, acting on coordinates of \mathbb{F}^{n} (permutation matrices with non-zero entries in \mathbb{F}^{*} instead of 1)
Problem: this group doesn't preserve the inner product, especially self-duality.

Define

$$
U:=\{\alpha \in \mathbb{F} \mid \alpha \bar{\alpha}=1\} \leq \mathbb{F}^{*} .
$$

Then

$$
|U|=\left\{\begin{array}{cl}
1 & \text { if } \operatorname{char}(\mathbb{F})=2 \text { and }^{-}=i d \\
2 & \text { if } \operatorname{char}(\mathbb{F}) \neq 2 \text { and }^{-}=i d \\
\sqrt{|\mathbb{F}|}+1 & \text { if }-\neq i d
\end{array}\right\} .
$$

Let

$$
\operatorname{Mon}_{n}(\mathbb{F}):=U \backslash S_{n},
$$

then the automorphism group of a code C is

$$
\operatorname{Aut}(C):=\left\{g \in \operatorname{Mon}_{n}(\mathbb{F}) \mid C \cdot g=C\right\}
$$

Let

$$
\operatorname{Mon}_{n}(\mathbb{F}):=U \imath S_{n},
$$

then the automorphism group of a code C is

$$
\operatorname{Aut}(C):=\left\{g \in \operatorname{Mon}_{n}(\mathbb{F}) \mid C \cdot g=C\right\}
$$

Every $g \in \operatorname{Mon}_{n}(\mathbb{F})$ has unique decomposition

$$
g=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \pi(g), \pi(g) \in S_{n}, \alpha_{i} \in U
$$

and the fixcode of g is

$$
C(g):=\{c \in C \mid c \cdot g=c\} .
$$

Remark

Let $g \in \operatorname{Mon}_{n}(\mathbb{F})$ be an element of order r such that $\operatorname{gcd}(r,|U|)=$ 1. Then g is conjugate in Mon $_{n}(\mathbb{F})$ to some element of S_{n}.

Theorem (MacWilliams, Mallos, Sloane, Ward, Rains)

Let C be a self-dual code in \mathbb{F}_{q}^{n} with minimum distance d.
If $q=2$ and C is even, then
$d \leq\left\{\begin{array}{ll}4 \cdot\lfloor n / 24\rfloor+4 & \text { if } n \neq 22(\bmod 24) \\ 4 \cdot\lfloor n / 24\rfloor+6 & \text { if } n=22(\bmod 24)\end{array}\right\}$.
If $q=2$ and C is doubly-even, then $d \leq 4 \cdot\lfloor n / 24\rfloor+4$.
If $q=3$, then $d \leq 3 \cdot\lfloor n / 12\rfloor+3$.
If $q=4$ and C is Hermitian self-dual, then $d \leq 2 \cdot\lfloor n / 6\rfloor+2$.

Definition

Self-dual codes, which achieve those bounds are called extremal.

If a full classification of self-dual (resp. extremal) codes is not possible, one tries to classify those codes with given automorphisms.

If a full classification of self-dual (resp. extremal) codes is not possible, one tries to classify those codes with given automorphisms.

Theorem (Huffmann, 1992)

Let $C \leq \mathbb{F}_{3}^{36}$ be a ternary, extremal $(d=12)$ code of length 36 such that $|\operatorname{Aut}(C)|$ is divided by some prime $p \geq 5$. Then C is isomorphic to the Pless-Code P_{36}.

Theorem (Nebe, 2011)

Let $C \leq \mathbb{F}_{3}^{48}$ be a ternary, extremal $(d=15)$ code of length 48 such that $|\operatorname{Aut}(C)|$ is divided by some prime $p \geq 5$. Then C is isomorphic to the Pless-Code P_{48} or to the extended quadratic residue code Q_{48}.

Decomposition theory of Huffman (1988)

Basic idea of the proofs:
Let C be an \mathbb{F}-linear code with an automorphism g of prime order $p \neq \operatorname{char}(\mathbb{F})$.

Decomposition theory of Huffman (1988)

Basic idea of the proofs:
Let C be an \mathbb{F}-linear code with an automorphism g of prime order $p \neq \operatorname{char}(\mathbb{F})$.
C is an $\mathbb{F}[g]$-module, this ring is isomorphic to $\mathbb{F}[x] /\left(x^{p}-1\right)$ and is the direct sum of field extensions of \mathbb{F}_{q}
$\rightarrow C$ is the direct sum of linear codes over those field extension of smaller lengths.

Decomposition theory of Huffman (1988)

Basic idea of the proofs:
Let C be an \mathbb{F}-linear code with an automorphism g of prime order $p \neq \operatorname{char}(\mathbb{F})$.
C is an $\mathbb{F}[g]$-module, this ring is isomorphic to $\mathbb{F}[x] /\left(x^{p}-1\right)$ and is the direct sum of field extensions of \mathbb{F}_{q}
$\rightarrow C$ is the direct sum of linear codes over those field extension of smaller lengths.

If C is self-dual: those subcodes are self-dual or pairs are dual to each other.

Decomposition theory of Huffman (1988)

Basic idea of the proofs:
Let C be an \mathbb{F}-linear code with an automorphism g of prime order $p \neq \operatorname{char}(\mathbb{F})$.
C is an $\mathbb{F}[g]$-module, this ring is isomorphic to $\mathbb{F}[x] /\left(x^{p}-1\right)$ and is the direct sum of field extensions of \mathbb{F}_{q}
$\rightarrow C$ is the direct sum of linear codes over those field extension of smaller lengths.

If C is self-dual: those subcodes are self-dual or pairs are dual to each other.

What happens if $p=\operatorname{char}(\mathbb{F})$? (motivation: prove the Theorems for $p=3$)

Let $C \leq \mathbb{F}^{n}$ be a self-dual code with an automorphism g of order $p=\operatorname{char}(\mathbb{F})$.

Let $C \leq \mathbb{F}^{n}$ be a self-dual code with an automorphism g of order $p=\operatorname{char}(\mathbb{F})$.
The group ring $\mathbb{F}[g] \cong \mathbb{F}[x] /\left(x^{p}\right)$ via $x \mapsto(1-g)$ is an Artinian chain ring with chain of ideals

$$
\mathbb{F}[g] \supset\langle(1-g)\rangle \supset\left\langle(1-g)^{2}\right\rangle \supset \cdots \supset\left\langle(1-g)^{q}\right\rangle=\{0\} .
$$

Let $C \leq \mathbb{F}^{n}$ be a self-dual code with an automorphism g of order $p=\operatorname{char}(\mathbb{F})$.
The group ring $\mathbb{F}[g] \cong \mathbb{F}[x] /\left(x^{p}\right)$ via $x \mapsto(1-g)$ is an Artinian chain ring with chain of ideals

$$
\mathbb{F}[g] \supset\langle(1-g)\rangle \supset\left\langle(1-g)^{2}\right\rangle \supset \cdots \supset\left\langle(1-g)^{q}\right\rangle=\{0\} .
$$

This chain gives raise to a chain of subcodes:

$$
C \supset C \cdot(1-g) \supset C \cdot(1-g)^{2} \supset \cdots \supset C \cdot(1-g)^{q}=\{0\}
$$

Theorem (E.)

Let $C \leq \mathbb{F}_{3}^{n}$ be a ternary, extremal code of length 36 resp. 48 and let $g \in \operatorname{Aut}(C)$ be of order 3 . We can assume that

$$
g=(1,2,3) \ldots(3 t-2,3 t-1,3 t)(3 t+1) \ldots(n) .
$$

Then g has no fixpoints (i.e. $3 t=n$) and C is a free a $\mathbb{F}_{3}[g]$-module, i.e. isomorphic to $\mathbb{F}_{3}[g]^{6}$ resp. to $\mathbb{F}_{3}[g]^{8}$.

If g acts without fixpoints on the coordinates, then the map

$$
\mathbb{F}^{n} \rightarrow \mathbb{F}[g]^{t},\left(c_{1}, \ldots, c_{p t}\right) \mapsto\left(\sum_{i=1}^{p} c_{i} g^{i-1}, \ldots, \sum_{i=1}^{p} c_{(t-1) p+i} g^{i-1}\right)
$$

is a bijection between the self-dual codes in \mathbb{F}^{n} and the self-dual codes in $\mathbb{F}[g]^{t}$ with respect to an inner product defined later.
(Example: $(0,1,2,1,1,0) \mapsto\left(g+2 \cdot g^{2}, 1+g\right) \in \mathbb{F}_{3}[g]$).

If g acts without fixpoints on the coordinates, then the map

$$
\mathbb{F}^{n} \rightarrow \mathbb{F}[g]^{t},\left(c_{1}, \ldots, c_{p t}\right) \mapsto\left(\sum_{i=1}^{p} c_{i} g^{i-1}, \ldots, \sum_{i=1}^{p} c_{(t-1) p+i} g^{i-1}\right)
$$

is a bijection between the self-dual codes in \mathbb{F}^{n} and the self-dual codes in $\mathbb{F}[g]^{t}$ with respect to an inner product defined later.
(Example: $(0,1,2,1,1,0) \mapsto\left(g+2 \cdot g^{2}, 1+g\right) \in \mathbb{F}_{3}[g]$).
What is the structure of self-dual codes over chain rings?

Self-dual codes over chain rings

Let R be a commutative Artinian chain ring with 1 and let $-: R \rightarrow R$ be an involution (i.e. automorphism of order 1 or 2).

Self-dual codes over chain rings

Let R be a commutative Artinian chain ring with 1 and let $-: R \rightarrow R$ be an involution (i.e. automorphism of order 1 or 2).

Let $\mathfrak{m} \leq R$ denote the maximal ideal of R, then ${ }^{-}$induces an involution of the residue field $\mathbb{F}:=R / \mathfrak{m}$.
(if the order on \mathbb{F} is 2 we call it Hermitian case)

Self-dual codes over chain rings

Let R be a commutative Artinian chain ring with 1 and let $-: R \rightarrow R$ be an involution (i.e. automorphism of order 1 or 2).

Let $\mathfrak{m} \leq R$ denote the maximal ideal of R, then ${ }^{-}$induces an involution of the residue field $\mathbb{F}:=R / \mathfrak{m}$.
(if the order on \mathbb{F} is 2 we call it Hermitian case)
Fix generator x of \mathfrak{m} such that

$$
\bar{x} \equiv \epsilon x \quad\left(\bmod R x^{2}\right), \epsilon \in\{1,-1\}
$$

Let $a \in \mathbb{N}_{0}$, such that

$$
R \supset R x \supset R x^{2} \supset \cdots \supset R x^{a+1}=\{0\}
$$

is the complete chain of ideals in R.

Example

The group ring $\mathbb{F}_{3}[g]$ carries the involution $\left\{\begin{array}{l}1 \mapsto 1 \\ g \mapsto g^{-1}\end{array}\right\}$.

Example

The group ring $\mathbb{F}_{3}[g]$ carries the involution $\left\{\begin{array}{l}1 \mapsto 1 \\ g \mapsto g^{-1}\end{array}\right\}$.
We have

$$
\begin{aligned}
\overline{(1-g)} & =-(1-g)+(1-g) \cdot\left(1-g^{-1}\right) \\
& =-(1-g)-(1-g)^{2} \\
& \equiv-(1-g) \quad\left(\bmod \left\langle(1-g)^{2}\right\rangle\right)
\end{aligned}
$$

\rightarrow choose $x:=(1-g)$ as generator with $\epsilon=-1$.

All indecomposable R-modules:

$$
S_{b}:=R x^{b} \text { for some } 0 \leq b \leq a,
$$

where $S_{0}=R$ is the free module of rank 1 and S_{a} is the unique simple R-module.

All indecomposable R-modules:

$$
S_{b}:=R x^{b} \text { for some } 0 \leq b \leq a,
$$

where $S_{0}=R$ is the free module of rank 1 and S_{a} is the unique simple R-module.
$V:=R^{t}=\left\{\left(v_{1}, \ldots, v_{t}\right) \mid v_{i} \in R\right\}$ denotes the free R-module of rank t.

An R-submodule C of V is called code of length t.
Theorem of Krull, Remak, Schmidt:

$$
C=S_{0}^{t_{0}} \oplus S_{1}^{t_{1}} \oplus \cdots \oplus S_{a}^{t_{a}}
$$

Define (Hermitian) inner product

$$
\langle\cdot, \cdot\rangle: V \times V \rightarrow R,\langle v, w\rangle:=\sum_{j=1}^{t} v_{j} \overline{w_{j}}
$$

Define (Hermitian) inner product

$$
\langle\cdot, \cdot\rangle: V \times V \rightarrow R,\langle v, w\rangle:=\sum_{j=1}^{t} v_{j} \overline{w_{j}}
$$

Now let $C=C^{\perp}$ be a self-dual code which is a free R-module, i.e. $C \cong R^{t / 2}$. Then the subcodes

$$
C^{(i)}:=C x^{i} \cong S_{i}^{t / 2}
$$

form the following chain:

- $C^{(1)^{\perp}}$
- $C=C^{\perp}$
- $C^{(1)}$
- $C^{(2)}$
- $C^{(a)}$
- $C^{(a+1)}=\{0\}$
- $C^{(2)}$
- $\begin{aligned} & C^{(a)} \\ & C^{(a+1)}=\{0\}\end{aligned}$
- $C=C^{\perp}$
$C^{(1)}$
- $C^{(2)}$
- $\begin{aligned} & C^{(a)} \\ & C^{(a+1)}=\{0\}\end{aligned}$

Multiplication by x^{a} defines an isomorphism between the residue field \mathbb{F} and the socle of R :

$$
\varphi: \mathbb{F}=R / R x \xrightarrow{\sim} R x^{a}=S_{a}, r+R x \mapsto r x^{a} .
$$

Multiplication by x^{a} defines an isomorphism between the residue field \mathbb{F} and the socle of R :

$$
\varphi: \mathbb{F}=R / R x \xrightarrow{\sim} R x^{a}=S_{a}, r+R x \mapsto r x^{a} .
$$

This defines an \mathbb{F}-linear isomorphism:

$$
\pi: \operatorname{soc}(V)=V x^{a} \rightarrow \mathbb{F}^{t},\left(v_{1}, \ldots, v_{t}\right) \mapsto\left(\varphi^{-1}\left(v_{1}\right), \ldots, \varphi^{-1}\left(v_{t}\right)\right)
$$

Multiplication by x^{a} defines an isomorphism between the residue field \mathbb{F} and the socle of R :

$$
\varphi: \mathbb{F}=R / R x \xrightarrow{\sim} R x^{a}=S_{a}, r+R x \mapsto r x^{a} .
$$

This defines an \mathbb{F}-linear isomorphism:

$$
\pi: \operatorname{soc}(V)=V x^{a} \rightarrow \mathbb{F}^{t},\left(v_{1}, \ldots, v_{t}\right) \mapsto\left(\varphi^{-1}\left(v_{1}\right), \ldots, \varphi^{-1}\left(v_{t}\right)\right)
$$

What does that mean?

Multiplication by x^{a} defines an isomorphism between the residue field \mathbb{F} and the socle of R :

$$
\varphi: \mathbb{F}=R / R x \xrightarrow{\sim} R x^{a}=S_{a}, r+R x \mapsto r x^{a} .
$$

This defines an \mathbb{F}-linear isomorphism:

$$
\pi: \operatorname{soc}(V)=V x^{a} \rightarrow \mathbb{F}^{t},\left(v_{1}, \ldots, v_{t}\right) \mapsto\left(\varphi^{-1}\left(v_{1}\right), \ldots, \varphi^{-1}\left(v_{t}\right)\right)
$$

What does that mean?
The socle $C^{(a)}$ is generated by some matrix $M x^{a}$, where $M \in \mathbb{F}^{\frac{t}{2} \times t}$ generates a self-dual code in \mathbb{F}^{t} (only true if C is a free module, in general it's the dual of a self-orthogonal code)
\rightarrow those are classified (for moderat length t)

Example

Let C be an extremal, ternary code of length 36 (resp. 48) with an automorphism g of order 3 (which is then fixpoint-free).

We choose $1-g$ as a generator of the maximal ideal in $\mathbb{F}_{3}[g]$.

Example

Let C be an extremal, ternary code of length 36 (resp. 48) with an automorphism g of order 3 (which is then fixpoint-free).

We choose $1-g$ as a generator of the maximal ideal in $\mathbb{F}_{3}[g]$.
The socle $C \cdot(1-g)^{2}$ is the fixcode $C(g)$ and is generated by some matrix

$$
M \otimes\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)
$$

where M generates a self-dual code in $\mathbb{F}_{3}^{12}\left(\right.$ resp. $\left.\mathbb{F}_{3}^{16}\right)$.

Example

Let C be an extremal, ternary code of length 36 (resp. 48) with an automorphism g of order 3 (which is then fixpoint-free).

We choose $1-g$ as a generator of the maximal ideal in $\mathbb{F}_{3}[g]$.
The socle $C \cdot(1-g)^{2}$ is the fixcode $C(g)$ and is generated by some matrix

$$
M \otimes\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)
$$

where M generates a self-dual code in $\mathbb{F}_{3}^{12}\left(\right.$ resp. $\left.\mathbb{F}_{3}^{16}\right)$.
We must have $d(\langle M\rangle) \geq \frac{12}{3}=4\left(\right.$ resp. $\left.\geq \frac{15}{3}=5\right)$
$\rightarrow\langle M\rangle$ is an extremal, ternary code, hence unique.

Let $0 \leq i \leq a$ and fix some $C^{(i+1)}$.
We want to find all lifts, i.e. all codes D which are self-orthogonal and $D x=C^{(i+1)}$.

Let $0 \leq i \leq a$ and fix some $C^{(i+1)}$.
We want to find all lifts, i.e. all codes D which are self-orthogonal and $D x=C^{(i+1)}$.

Define

$$
W_{i}:=C^{(i+1)^{\perp}} x^{i} / C^{(i+1)} \cong \mathbb{F}^{t}
$$

Let $0 \leq i \leq a$ and fix some $C^{(i+1)}$.
We want to find all lifts, i.e. all codes D which are self-orthogonal and $D x=C^{(i+1)}$.

Define

$$
W_{i}:=C^{(i+1)^{\perp}} x^{i} / C^{(i+1)} \cong \mathbb{F}^{t}
$$

with the inner product

$$
(\cdot, \cdot)_{i}: W_{i} \times W_{i} \rightarrow \mathbb{F},\left(A x^{i}+C^{(i+1)}, B x^{i}+C^{(i+1)}\right)_{i}:=\varphi^{-1}\left(\langle A, B\rangle x^{i}\right)
$$

which is well-defined, non-degenerate and Hermitian in the Hermitian case and $\epsilon^{(i+a)}$-symmetric otherwise.

$$
X_{i}:=\left(\operatorname{soc}(V)+C^{(i+1)}\right) / C^{(i+1)} \text { is a self-dual code in } W_{i} .
$$

$X_{i}:=\left(\operatorname{soc}(V)+C^{(i+1)}\right) / C^{(i+1)}$ is a self-dual code in W_{i}. $C^{(i)} / C^{(i+1)}$ is self-dual as well and it complements X_{i}, i.e.

$$
W_{i}=C^{(i)} / C^{(i+1)} \oplus X_{i}
$$

$X_{i}:=\left(\operatorname{soc}(V)+C^{(i+1)}\right) / C^{(i+1)}$ is a self-dual code in W_{i}. $C^{(i)} / C^{(i+1)}$ is self-dual as well and it complements X_{i}, i.e.

$$
W_{i}=C^{(i)} / C^{(i+1)} \oplus X_{i}
$$

\rightarrow the lifts are given by the complements of X_{i}.
$X_{i}:=\left(\operatorname{soc}(V)+C^{(i+1)}\right) / C^{(i+1)}$ is a self-dual code in W_{i}. $C^{(i)} / C^{(i+1)}$ is self-dual as well and it complements X_{i}, i.e.

$$
W_{i}=C^{(i)} / C^{(i+1)} \oplus X_{i}
$$

\rightarrow the lifts are given by the complements of X_{i}.
How does one construct those complements?

Choose some isotropic complement Y_{i} of X_{i} in W_{i}.
There are bases B_{1} and B_{2} of X_{i} resp. Y_{i} such that the Gram matrix of $(\cdot, \cdot)_{i}$ w.r.t $\left(B_{1}, B_{2}\right)$ is

$$
\left(\begin{array}{cc}
0 & l \\
\epsilon^{a+i} l & 0
\end{array}\right) .
$$

Choose some isotropic complement Y_{i} of X_{i} in W_{i}.
There are bases B_{1} and B_{2} of X_{i} resp. Y_{i} such that the Gram matrix of $(\cdot, \cdot)_{i}$ w.r.t $\left(B_{1}, B_{2}\right)$ is

$$
\left(\begin{array}{cc}
0 & I \\
\epsilon^{a+i} l & 0
\end{array}\right) .
$$

\rightarrow all self-dual complements of X_{i} are given by $\left\langle B_{2}+B_{1} \cdot A\right\rangle$, where

$$
A \in \mathbb{F}^{t / 2 \times t / 2} \text { such that } \bar{A}^{\mathrm{tr}}+\epsilon^{a+i} A=0 .
$$

(the set of all thoses matrices form a vector space over \mathbb{F})

Example

We determined the socle $C^{(2)}$ of an extremal, ternary code of length 36 with an automorphism g of order 3 .

Example

We determined the socle $C^{(2)}$ of an extremal, ternary code of length 36 with an automorphism g of order 3 .
Vectorspace of all $A \in \mathbb{F}_{3}^{6 \times 6}$ such that

$$
\begin{aligned}
& \bar{A}^{\operatorname{tr}}+\epsilon^{a+i} A=0 \\
\Leftrightarrow & A^{\operatorname{tr}}-A=0
\end{aligned}
$$

has dimension 21 over \mathbb{F}_{3}, the centralizer of g in $\operatorname{Aut}\left(C^{(2)}\right)$ has 16 orbits on this set, so we have 16 possibilities for $C^{(1)}$.

Example

We determined the socle $C^{(2)}$ of an extremal, ternary code of length 36 with an automorphism g of order 3.
Vectorspace of all $A \in \mathbb{F}_{3}^{6 \times 6}$ such that

$$
\begin{aligned}
& \bar{A}^{\operatorname{tr}}+\epsilon^{a+i} A=0 \\
\Leftrightarrow & A^{\operatorname{tr}}-A=0
\end{aligned}
$$

has dimension 21 over \mathbb{F}_{3}, the centralizer of g in $\operatorname{Aut}\left(C^{(2)}\right)$ has 16 orbits on this set, so we have 16 possibilities for $C^{(1)}$.
For these 16 codes we constructed all 3^{15} codes $C^{(0)}$ and have shown:

Theorem (Nebe, E.)

Let C be an extremal, ternary code of length 36 with an automorphism of order 3. Then C is isomorphic to the Pless Code P_{36}.

Theorem (Nebe, E.)

Let C be an extremal, ternary code of length 36 with an automorphism of order 3. Then C is isomorphic to the Pless Code P_{36}.

Remark

The search spaces for $n=48$ has size 3^{36} resp. 3^{28} - I can wait a few days for a result, but not 10000 years.

If C is a $[72,36,16]$-code with an automorphism g of order 2 , then g has no fixpoints and C is a free $\mathbb{F}_{2}[g]$-module \rightarrow there are 41 possibilities for $C^{(1)}$, the search space for $C^{(0)}$ has dimension 171 over \mathbb{F}_{2}.

