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Group codes over fields

Let F be a finite field and G = {g1, . . . , gn} be a finite group, then
a group code C is an (left/right/two-sided) ideal in the group ring
FG .

Dimension of C is the dimension as a vector space.
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Berman ’67: Reed-Muller Code of order m − l is the l th power of
the Jacobson radical in the group algebra F2C

m
2

also: cyclic codes are ideals in the group algebra
FCn
∼= F[x ]/(xn − 1)

MacWilliams ’69: constructed certain self-dual codes over F2D2n,
but also remarked that this was by no means a complete
classification

MacWilliams ’70: generalized properties of cyclic codes to codes
over abelian group rings
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The map

φ : FG → Fn,

n∑
i=1

aigi 7→ (a1, . . . , an)

is an isomorphism, which transfers all relevant properties from a
group code C ≤ FG to a classical linear code φ(C ) ≤ Fn with
G ≤ Aut(C ).
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A linear Code C of length n over F is called group code for G , if
there is a bijektion

ν : {1, . . . , n} → G ,

such that {
n∑

i=1

aiν(i) | (a1, . . . , an) ∈ C

}
is an ideal in FG .
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Theorem (Bernal, del Ŕıo, Simón ’09)

Let C be a linear code of length n over F and let G be a finite
group of order n.

i) C is a left group code for G , iff G is isomorphic to a transitive
subgroup of PAut(C ) = Aut(C ) ∩ Sn.

ii) C is a two-sided group code for G , iff G is isomorphic to a
transitive subgroup H of Sn, such that
H ∪ CSn(G ) ⊆ PAut(C ).
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Note: a linear code C ≤ Fn can be a group code for different
groups G .

Question: which codes can be realized over ”nice”groups (i.e.
cyclic, abelian,...)?

Theorem (Pillado, González, Markov, Markova, Martinez ’18)

Every two-sided group code of dimension ≤ 3 is abelian.
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Theorem (Bernal, del Ŕıo, Simón, ’09)

A group G has an abelian decomposition, if two abelian subgroups
A,B of G exists, such that

G = AB = {ab | a ∈ A, b ∈ B}.

In this case every two-sided group code for G is a group code for
an abelian group.

Every group of order < 128, except
{24, 48, 54, 60, 64, 72, 96, 108, 120}, has an abelian decomposition.

→ every two-sided group code over such a group G is abelian.
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Remark

Let G be a group of order < 64, which does not have an abelian
decomposition. Then there exists a two-sided ideal in F2G which is
not an abelian group code .

Conjecture

Every two-sided group code over a finite group G is abelian, iff G
has an abelian decomposition.
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Group codes over simple groups

Theorem

Let F be a finite field, C ≤ FA5 be a two-sided group code and let
A := PAut(C ). Then there a two possibilities:

i) A = S60, in particular C = {0},C = FA5,C = 〈
∑

g∈A5
g〉 or

C = 〈
∑

g∈A5
g〉⊥

ii) C is not an abelian group code

The group A contains A2
5, in fact all permutations which are

induced by the action

A2
5 × A5 → A5, ((g1, g2), g) 7→ g1gg

−1
2 .

This group is primitive, so A is also primitive.
Using the O’Nan-Scott theorem (classification of all (primitive)
maximal subgroups of Sn) one can show that all possible A 6= S60
do not contain a transitive, abelian subgroup.
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This is still an explicit calculation (done in S60 of order 8.3 · 1081)
in GAP:

Is this theorem true for other alternating groups? Can the
O’Nan-Scott theorem be used to show such an assertion for other
simple groups? Or other interesting families of groups?
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Group codes over chain rings

Construction D: a chain of (binary) linear codes can be used to
construct a Z-lattice with a lower bound on the minumum.

→ can group codes over chain rings be constructed with chains of
group codes over fields?

in other words: how can linear codes be lifted to codes over chain
rings, such that a certain subgroup of the (permutation-)
automorphism group is preserved?
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Let R be a commutative, artinian chain ring of length ` with
maximal ideal m = 〈π〉 und residue field F := R/m.

R-module isomorphisms (j = 0, . . . , `− 1)

αj : mj/mj+1 → F, πj r + mj+1 7→ r + m

(extend this to RG by abuse of notation)
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Definition

A group code C ≤ FG is called (central) projective, if it is
generated by some (central) idempotent, i.e. C = FGe and e2 = e.

If char(F) - |G |, then FG is semisimple by the theorem of Maschke,
so every group code is projective.
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Let e ∈ FG be an idempotent. Then there exists an idempotent
ε ∈ RG with

α0(ε) = ε+ m = e.

Lifting of idempotents in a ring with nilpotent ideal: chose a
preimage ε0 ∈ RG with α0(ε0) = e and define εi = 3ε2i−1 − 2ε3i−1.
Then ε := ε` satisfies α0(ε) = e and ε2 = ε.

Simon Eisenbarth Relative Projective Group Codes over Chain Rings



Let e ∈ FG be an idempotent. Then there exists an idempotent
ε ∈ RG with

α0(ε) = ε+ m = e.

Lifting of idempotents in a ring with nilpotent ideal: chose a
preimage ε0 ∈ RG with α0(ε0) = e and define εi = 3ε2i−1 − 2ε3i−1.
Then ε := ε` satisfies α0(ε) = e and ε2 = ε.

Simon Eisenbarth Relative Projective Group Codes over Chain Rings



Let
C? : C0 ≤ C1 ≤ · · · ≤ C`−1

be a chain of projective group codes over FG with idempotents
Ci = FGei , then eiej = emin(i ,j).

Let εi ∈ RG be an idempotent such that α0(εi ) = εi + m = ei .
Define

C := RG ·

`−1∑
j=0

πjεj

 .
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Define

C := RG ·

`−1∑
j=0

πjεj

 .

This (left)-ideal is relative projective for the subgroup {1} of G (in
the sense of homological algebra): for every short exact sequenz

0→M→N ϕ→ C → 0

for which there exists an R-module homomorphism

ψ : C → N with ϕ ◦ ψ = idC ,

there exists an RG -module homomorphism with the same property

→ if the sequence is right split as R-module, it is right split as
RG -module
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Theorem

Let C ≤ RG be a relative projective group code. Then there exist
primitive, orthogonal idempotents εi ∈ RG and ai ∈ N0 such that

C =
s⊕

i=1

πaiRGεi .
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Let C =
⊕s

i=1 π
aiRGεi be a relative projective group ring code.

For 0 ≤ j ≤ `− 1 define

Cj := αj

(
C ∩mj

C ∩mj+1

)
.

This code is projective because

αj

(
C ∩mj

C ∩mj+1

)
= FG ·

∑
ai≤j

α0(εi )︸ ︷︷ ︸
=:ej

and
C? : C0 ≤ C1 ≤ · · · ≤ C`−1

is a chain of projective group ring codes over F.
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We get the following maps:

C? : C0 ≤ C1 ≤ · · · ≤ C`−1

↓

C = RG

`−1∑
j=0

πjεj


↓

Cj = αj

(
C ∩mj

C ∩mj+1

)
, j = 0, . . . , `− 1
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In summary, we get the following tongue twister:

Theorem

Relative projective group ring codes over chain rings are in
bijection to chains of projective group ring codes.
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Duality

Let C ≤ RG be a relative projective group ring code with
C? : C0 ≤ C1 ≤ · · · ≤ C`−1. Then the

”
dual chain“ is given by

C⊥? : C⊥`−1 ≤ · · · ≤ C⊥0 .

Remark

If ` is even, a self-dual relative projective group code always exists,
for example

C? = {0} ≤ · · · ≤ {0}︸ ︷︷ ︸
`/2

≤ FG ≤ · · · ≤ FG︸ ︷︷ ︸
`/2

.

For ` odd, the code C l−1
2

over FG has to be self-dual, but such a

code can never be generated by an idempotent (Willems 2002)
→ a self-dual relative projective code over RG exists iff the length
of R is even
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The minimum distance

Hamming weight:

wH(c) := |{ci | ci 6= 0}|, c =
n∑

i=1

cigi ∈ C ≤ RG

Hamming distance:

dH(C) := min{wH(c) | 0 6= c ∈ C}

Theorem

Let C ≤ RG be a relative projective group code with
C? : C0 ≤ C1 ≤ · · · ≤ C`−1. Then

dH(C) = dH(C`−1).
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Special case R = Z /pl Z:
Euclidian weight:

wE (c) := min

{
n∑

i=1

a2i | ai ∈ Z, ai + pl Z = ci

}

Euclidian distance:

dE (C) = min{wE (c) | 0 6= c ∈ C}.

Theorem

Let C ≤ (Z /pl Z)G be a relative projective group code with
C? : C0 ≤ C1 ≤ · · · ≤ C`−1. If there exists a γ > 0, such that
dE (Cj) ≥ γ

p2l
, then dE (C) ≥ γ.

(similar to construction D)
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Example: Dihedral groups

n = 2lm, m odd:
Let

xm − 1 = (x − 1) · f1 . . . fm1 · g1g∗1 . . . gm2g
∗
m2
,

where the fi are self-conjugate with conjugation ∗ : ζm 7→ ζ−1m .
Then F2D2n has the central, primitive, orthogonal idempotents
{e0, . . . , em1+m2} and

F2D2n · ei/Ji ∼=

{
F2C2 i = 0

E2×2
i i ≥ 1, [E : F] = deg(fi )/2 resp. deg(gi )
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The idempotents in F2C2 are 0 and 1, the idempotents in E2×2
i are

conjugated to (
0 0
0 0

)
,

(
1 0
0 0

)
,

(
1 0
0 1

)
.

→ the idempotents of F2D2n · ei/Ji can be lifted to idempotents of
FD2n · ei , also suitable chains of projective, dihedral group codes
can be easily constructed

→ the (self-dual) codes in (Z /4Z)D2n (for n ≤ 20) aren’t
particular interesting, usually in modular representation theory,
non-projective group codes are

”
better“ than projective ones

(higher minimum distance etc.)
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