Character Table info for S5
- 
Name:
- 
A5.2
- 
Group order:
- 
120 = 23 ⋅ 3 ⋅ 5
- 
Number of classes:
- 
7
- 
InfoText value:
- 
origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5],
constructions: Aut(A5)
- 
Duplicates:
- 
A6.2_1M3,
L2(25)M3
- 
Maximal subgroups:
- 
|  | Order | Index | Structure | Name |  
| 1 | 60 | 2 | A5 | A5 |  
| 2 | 24 | 5 | S4 | s4 |  
| 3 | 20 | 6 | 5:4 | 5:4 |  
| 4 | 12 | 10 | S3 × 2 | S3x2 |  
 
- 
Available Brauer tables:
- 
- 
Atlas representations:
- 
9 available
- 
Group constructions in GAP:
- 
AtlasGroup( "A5.2" ),AtlasStabilizer( "A6.2_1", "S6G1-p6aB0" ),AtlasStabilizer( "A6.2_1", "S6G1-p6bB0" ),AtlasStabilizer( "M11", "M11G1-p66B0" ),AtlasSubgroup( "A6.2_1", 2 ),AtlasSubgroup( "A6.2_1", 3 ),AtlasSubgroup( "J2.2", 10 ),AtlasSubgroup( "M11", 4 ),AtlasSubgroup( "M12.2", 9 ),AtlasSubgroup( "Th", 16 ),AutomorphismGroup( AlternatingGroup( 5 ) ),PrimitiveGroup( 5, 5 ),PrimitiveGroup( 6, 2 ),PrimitiveGroup( 10, 2 ),SmallGroup( 120, 34 ),SymmetricGroup( 5 ),TransitiveGroup( 5, 5 ),TransitiveGroup( 6, 14 ),TransitiveGroup( 10, 12 ),TransitiveGroup( 10, 13 ),TransitiveGroup( 12, 74 ),TransitiveGroup( 15, 10 ),TransitiveGroup( 20, 30 ),TransitiveGroup( 20, 32 ),TransitiveGroup( 20, 35 ),TransitiveGroup( 24, 202 ),TransitiveGroup( 30, 22 ),TransitiveGroup( 30, 25 ),TransitiveGroup( 30, 27 )
- 
Stored class fusions from this table:
- 
24:S5,
34:S5,
S6,
A7,
J2.2,
L2(25),
L3(4).21,
L3(5),
M11,
M12.2,
Th,
24:S5
- 
Stored class fusions to this table:
- 
2.2.24+6:S5,
2.24+6:S5,
2.A5.2,
2.4.24.S5,
4Y(2 × A5):2,
25:S5,
24:S5,
26:S5,
210:(25:s5),
21+4.S5,
21+6+:S5,
31+4+:21+4−.S5,
34:S5,
3 × Isoclinic(2.A5.2),
4.24.S5,
2.(25:S5),
5:4,
(2.A5 × A5):2,
(22 × A5):2,
(3.A6.22 × A5):2,
(3.A6 × A5):2,
(7:3 × A5):2,
(A4 × A5):2,
(A5 × 3):2,
(A5 × A5):2,
(A5 × A9):2,
(A5 × A12):2,
(A5 × D10).2,
(A5 × J2):2,
(A5 × U3(8):3):2,
(A5 × U4(2)):2,
(A6:22 × A5).2,
(A6 × A5):2,
(A7 × A5):2,
(A8 × A5):2,
(A6 × A5).2,
A5,
Isoclinic(2.A5.2),
25:S5,
22.24.S5,
S3 × 2,
gl25,
24:S5,
25:S5,
S4,
2.(24:S5),
w(d5)