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Preface
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Mohammed Barakat would also like to thank the audience of the course for their helpful
remarks and questions. Special thanks to Henning Kopp for his numerous improvements
suggestions. Also thanks to Jochen Kall who helped locating further errors and typos.
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CHAPTER 1

General Concepts

For an overview see the slides (in German)
http://www.mathematik.uni-kl.de/~barakat/Lehre/WS10/Cryptography/material/Crypto_talk.pdf Begin

Lect. 2,
last 30
min.

1. Algorithms and their runtime

Definition 1.1. An algorithm is called deterministic if the output only depends on
the input. Otherwise probabilistic (or randomized).

Remark 1.2.

(1) The output of a deterministic algorithm is a function of the input.
(2) The steps of a probabilistic algorithm might depend on a random source.
(3) If the random source is regarded as an additional input, the probabilistic algorithm

becomes deterministic.
(4) Probabilistic algorithms often enough supersede deterministic ones.

Definition 1.3 (O-notation). Let f : N → R>0 be a function. Define

O(f) := {h : N → R≥0 | ∃c = c(h) ∈ R, N = N(h) ∈ N : h(n) ≤ cf(n) ∀n ≥ N}.
O is called the big Landau O. Instead of g ∈ O(f) one often writes g = O(f).

Remark 1.4. Let f, g : N → R≥0.

(1) f ∈ O(f).
(2) cO(f) = O(f) for all c ∈ R≥0.
(3) O(f)O(g) = O(fg).

Example 1.5.

(1) O(1) = {f : N → R≥0 | f is bounded}
(2) O(5n3 − 3n − 2) = O(n3).
(3) O(f) ⊂ O(g) for f ≤ g.

Definition 1.6. The runtime1 tA(x) of an algorithm A for an input x is the number
of (elementary) steps2 (or operations) of the algorithm (when executed by a computer =

1German: Laufzeit
2... including reading from the random source.

1
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2 1. GENERAL CONCEPTS

multitape Turing machine). The algorithm is said to lie in O(f) for f : N → R≥0 if the
runtime of the algorithm is bounded (above) by f(s), where s is the “size”3 of the input x.

Definition 1.7. An algorithm is called a polynomial (runtime) algorithm if it lies
in O(nk) for some k ∈ N0. Otherwise an exponential (runtime) algorithm.

Begin
Lect. 3

Example 1.8.

(1) Addition and subtraction of n-digit natural numbers lies in O(n). Cannot be
improved further.

(2) Multiplication and division of n-digit natural numbers lies in O(n2) (schoolbook
algorithm). Can be improved: Schönhage–Strassen multiplication algorithm
lies in O(n log n log log n). Let M(n) denote the runtime of the multiplication
algorithm.

(3) Factorial of a (fixed) natural number m lies in O(m2 log m). Can be improved!

2. Multi-valued maps

Definition 2.1. A multi-valued map from M to N is a map F : M → 2
N with

F (m) 6= ∅ for all m ∈ M , where 2
N denotes the power set of N . We write F : M Ã N

and write F (m) = n instead of n ∈ F (m). Further:

(1) F is called injective if the sets F (m) are pairwise disjoint.
(2) F is called surjective if

⋃
m∈M F (m) = N .

(3) F is called bijective if it is injective and surjective.
(4) For a surjective F : M Ã N define

F−1 : N Ã M, F−1(n) := {m ∈ M | n ∈ F (m)}.
F−1 is called the (multi-valued) inverse of F .

(5) For F, F ′ : M Ã N we write F ⊂ F ′ if F (m) ⊂ F ′(m) for all m ∈ M .
(6) A multi-valued map F defines a map M → N iff |F (m)| = 1 for all m ∈ M . We

then say F is a map and denote the corresponding map M → N again by F .

Exercise 2.2.

(1) Let F, F ′ : M Ã N be two multi-valued maps with F ⊂ F ′. Then F ′ injective
implies F injective.

(2) Let F : M Ã N be surjective. Then
(a) F−1 is surjective and (F−1)−1 = F .
(b) F is injective (and hence bijective) iff F−1 is a (surjective) map.

(3) Each bijective multi-valued map F : M Ã N is the multi-valued inverse g−1 of a
surjective map g : N → M (viewed as a multi-valued map).

3E.g. the number of symbols needed to encode the value of x. The notion is suggestive although a bit
ambiguous.
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3. Alphabets and the word semi-group

Definition 3.1. An alphabet A is a finite nonempty set. Its cardinality |A| is called
the length of the alphabet and its elements are called letters. Further:

(1) An element w = (w1, . . . , wn) ∈ An is called a word in A of length ℓ(w) = n.
We write w = w1 . . . wn.

(2) Set A• :=
⋃

n∈N0
An with A0 := {ε}, where ε is a symbol outside of the alphabet

denoting the empty word of length 0.
(3) The concatenation of words is a binary operation · on A• defined by (v1 . . . vℓ(v))·

(w1 . . . wℓ(w)) := v1 . . . vℓ(v)w1 . . . wℓ(w).

Example 3.2.

(1) A = {a, . . . , z}, crypto ∈ A•.
(2) A = {0, 1}, 1010010 ∈ A•.

Remark 3.3. The pair (A•, ·) is a semi-group with neutral element ε. It is Abelian

iff |A| = 1. Further ℓ(v · w) = ℓ(v) + ℓ(w) for v, w ∈ A•, i.e., ℓ : (A•, ·) → (Z≥0, +) is a
semi-group homomorphism.

4. Cryptosystems

Definition 4.1. A cryptosystem is a 5-tuple (P ⊂ A•
1, C ⊂ A•

2, κ : K ′ → K,E,D)
where

• A1 and A2 are alphabets,
• κ is bijective,
• E = (Ee)e∈K a family of multi-valued maps Ee : P Ã C, and
• D = (Dd)d∈K′ a family of surjective maps Dd : C → P ,

such that
Eκ(d) ⊂ D

−1
d for all d ∈ K ′

(in the sense of Definition 2.1(5)). We further require that κ,E,D are realized by polyno-
mial runtime algorithms, where only E is allowed to be probabilistic. We call

• A1 the plaintext alphabet,
• P the set of plaintexts,
• A2 the ciphertext alphabet,
• C the set of ciphertexts,
• K the encryption key space,
• K ′ the decryption key space,
• κ the key-correspondence,
• E the encryption algorithm,
• Ee the encryption algorithm with key e (used by the sender),
• D the decryption algorithm, and
• Dd the decryption algorithm with key d (used by the receiver).

Often enough we take A1 = A2 =: A and P := A•.
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Exercise 4.2. The multi-valued map Ee is injective for all e ∈ K.

Principle 4.3 (Kerckhoff’s Principle, 1883).
First formulation: The cryptographic strength of a cryptosystem should not depend
on the secrecy of the cryptosystem but only on the secrecy of the decryption key d (see
Remark 4.8 below).
Second formulation: The attacker knows the cryptosystem.

A simple justification of this principle is that it becomes increasingly difficult to keep an
algorithm secret (security by obscurity) if it is used (by an eventually growing number of
persons) over a long period of time. On the contrary: It is a lot easier to frequently change
and exchange keys between two sides, use different keys for different communications, and
destroy keys after usage. And for the same reason any cryptographic weakness of a public
algorithm cannot remain secret for a long period of time.

Remark 4.4.

(1) Kerckhoff’s Principle is nowadays a widely accepted principle.
(2) Major drawback: Your opponent/enemy4 can use the same thoroughly tested and

publicly trusted algorithm.

4.a. Stream ciphers.

Definition 4.5. A cryptosystem is called a stream cipher if a word p = v1 . . . vl ∈
Al

1 ∩P is encrypted into a word Ee(p) = c = c0 ·w1 . . . wl ∈ C ⊂ A•
2 with c0 ∈ C and where

the letter wi does not depend on vi+1, . . . , vl (but only on e, the letters v1, . . . , vi, and the
random source).

Remark 4.6. This property of being a stream cipher can be relaxed to N -letter blocks
simply by replacing A1 by AN

1 . If N is “small” one still speaks about a stream cipher,
where small means effectively enumerable in a “reasonable” amount of time. For example
{0, 1}32 can still be regarded as an alphabet5 but no longer6 {0, 1}128.

Begin
Lect. 4 4.b. Symmetric and asymmetric cryptosystems.

Definition 4.7. A cryptosystem is called symmetric or a secret key cryptosystem
(SKC) if computing images under κ is feasible7, otherwise an asymmetric or a public
key cryptosystem (PKC). The corresponding key pairs (d, e) are called symmetric or
asymmetric, respectively.

4A source of headache for ministries of interior and secret services.
532 bits = 4 bytes, the maximum in the UTF-encoding, which is (probably) enough to encode all

known human alphabets.
6128 bits = 16 bytes, the AES-block size.
7Requiring κ−1 to be realized by a polynomial runtime algorithm is not the correct concept as K and

K ′ are finite sets in many relevant cryptosystems. In that case κ−1 is trivially computed by a polynomial
runtime algorithm by testing the polynomial κ on the finite set K ′.
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Remark 4.8.

(1) In many (and quite relevant) symmetric cryptosystems K = K ′ and κ = idK . We
then write (P,C,K,E,D). The most prominent example is the XOR-cryptosystem.

(2) Whereas the encryption key e of an asymmetric cryptosystem can be published
(public key), e must be kept secret for a symmetric cryptosystem. d is in any
case called the secret key.

(3) As algorithms implementing symmetric cryptosystem are typically more efficient
than those of asymmetric ones, symmetric systems are used for almost all the
cryptographic traffic, while asymmetric systems are used to exchange the needed
symmetric keys.

4.c. Security properties.

Definition 4.9. A cryptosystem is said to have the security property8

(1) onewayness9 (OW) if it is unfeasible for the attacker to decrypt an arbitrary
given ciphertext.

(2) indistinguishability10 (IND) or semantic security if it is unfeasible for the
attacker to associate to a given ciphertext one among several known plaintexts.

(3) non-malleability11 (NM) if it is unfeasible for the attacker to modify a given
ciphertext in such a way, that the corresponding plaintext is sensible.

Remark 4.10. One can show that: NM =⇒ IND =⇒ OW.

4.d. Attacks.

Definition 4.11. One distinguishes the following different attack scenarios12:

(1) Ciphertext-only attack (COA): The attacker only receives ciphertexts.
(2) Known-plaintext attack (KPA): The attacker receives pairs consisting of a

plaintext and the corresponding ciphertext.
(3) Chosen-plaintext attack (CPA): The attacker can once choose plaintexts and

then receive their corresponding ciphertexts. “Once” in the sense that he is not
allowed to alter his choice depending on what he receives.

(4) Adaptive chosen-ciphertext attack (CCA2): The attacker is able to adap-
tively choose ciphertexts and receive their corresponding plaintexts. “Adaptive”
means that he is allowed to alter his choice depending on what he receives. If he
is challenged to decrypt a ciphertext he is of course not allowed to receive its plain
text. But normally such attacks are intended to recover the decryption key d of
the decryption algorithm Dd.

8German: Sicherheitseigenschaft
9German: Einweg-Eigenschaft
10German: Nicht-Unterscheidbarkeit
11German: Nicht-Modifizierbarkeit
12German: Angriffsart
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Remark 4.12.

(1) CPA is trivial for public key systems.
(2) One can show that CCA2 ≻ CPA ≻ known-plaintext ≻ ciphertext-only attacks,

where ≻ means “stronger than”.

4.e. Security models.

Definition 4.13. A security model is a security property together with an attack
scenario.

Remark 4.14. One can show that

NM-CCA2 = IND-CCA2.

IND-CCA2, i.e., indistinguishability under chosen-ciphertext attack, is the strongest secu-
rity model of an asymmetric probabilistic cryptosystem. To illustrate IND-CCA2 consider
the following game between a challenger13 H and an attacker A:

(1) H generates a secret key d ∈ K ′ and publishes e = κ(d).
(2) A has access to the decryption machine Dd (but not to the secret key d) and is

able to perform arbitrary computations.
(3) A generates two different plaintexts p0, p1 ∈ P and hands them to H.
(4) H chooses randomly an i ∈ {0, 1} and sends c = Ee(pi) back to A, challenging him

to correctly guess i.
(5) A has access to the decryption machine Dd (but not to the secret key d) and is

able to perform arbitrary computations, except deciphering c.
(6) A guesses which i was chosen by H, (only) depending on the computations he was

able to do.

IND-CCA2 means that the probability of A correctly guessing i is not higher than 1
2
.

13German: Herausforderer



CHAPTER 2

Information Theory

1. Some probability theory

1.a. Probability spaces.

Definition 1.1. Let Ω be a finite nonempty set and µ : Ω → [0, 1] with
∑

x∈Ω µ(x) = 1.
For A ⊂ Ω define µ(A) =

∑
x∈A µ(x).

(1) (Ω, µ) is called a finite probability space1.
(2) µ is called a probability measure2 or probability distribution3.
(3) A subset A ⊂ Ω is called an event4, while an element x ∈ Ω an elementary

event5.
(4) The distribution µ̄ defined by µ̄(x) := 1

|Ω| is called the (discrete) uniform

distribution6 on Ω.
(5) If µ(B) > 0 define the conditional probability7

µ(A | B) :=
µ(A ∩ B)

µ(B)
,

the probability of A given the occurrence of B.
(6) The events A and B are called (statistically) independent8 if

µ(A ∩ B) = µ(A)µ(B).

Exercise 1.2. Let (Ω, µ) be a finite probability space and A,B events in Ω.

(1) µ(∅) = 0, µ(Ω) = 1, 0 ≤ µ(A) ≤ 1, and µ(Ω \ A) = 1 − µ(A).
(2) A ⊂ B ⊂ Ω =⇒ µ(A) ≤ µ(B).
(3) µ(A ∩ B) = µ(A | B)µ(B).
(4) Bayes’ formula:

µ(A | B) = µ(B | A)
µ(A)

µ(B)

if µ(A), µ(B) > 0.

1German: Wahrscheinlichkeitsraum
2German: Wahrscheinlichkeitsmaß
3German: Wahrscheinlichkeitsverteilung
4German: Ereignis
5German: Elementarereignis
6German: (diskrete) Gleichverteilung
7German: bedingte Wahrscheinlichkeit
8German: stochastisch unabhängig

7



8 2. INFORMATION THEORY

(5) A and B are independent iff µ(B) = 0 or µ(A | B) = µ(A).
(6) For µ(A), µ(B) > 0: µ(A | B) = µ(A) iff µ(B | A) = µ(B).

1.b. Random variables.

Definition 1.3. Let (Ω, µ) be a finite probability space.

(1) A map X : Ω → M is called an (M-valued discrete) random variable9 on Ω.
(2) The distribution µX defined by

µX(m) := µX(X = m) for m ∈ M

is called the distribution of X, where {X = m} or simply X = m stands for the
preimage set X−1({m}). It follows that µX(A) = µX(X ∈ A) for A ⊂ M , where,
again, {X ∈ A} or simply X ∈ A stands for the preimage set X−1(A).

(3) If M is a subset of C define the expected value10

E(X) :=
∑

x∈Ω

X(x)µ(x) ∈ C.

(4) Let Xi : Ω → Mi, i = 1, . . . n be random variables. For mi ∈ M define the
product probability measure or product distribution

µX1,...,Xn
(m1, . . . ,mn) := µ(X1 = m1, . . . , Xn = mn) := µ(

n⋂

i=1

{Xi = mi}).

Let X : Ω → M and Y : Ω → N be two random variables.

(5) X is called uniformly distributed11 if µX(m) = 1
|M | for all m ∈ M .

(6) For µY (n) > 0 define the conditional probability

µX|Y (m | n) :=
µX,Y (m,n)

µY (n)
,

the probability of X = m given the occurrence of Y = n.
(7) X and Y are called (statistically) independent if

µX,Y (m,n) = µX(m)µY (n).

Exercise 1.4. Let (Ω, µ) be a finite probability space and X : Ω → M and Y : Ω → N
be two random variables. Prove:

(1) Bayes’ formula:

µX|Y (m | n) = µY |X(n | m)
µX(m)

µY (n)

if µX(m), µY (n) > 0. Or, equivalently:

µX|Y (m | n)µY (n) = µY |X(n | m)µX(m).

9German: Zufallsvariable
10German: Erwartungswert
11German: gleichverteilt
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(2) X and Y are independent iff for all m ∈ M and n ∈ N

µY (n) = 0 or µX|Y (m | n) = µX(m).

Exercise 1.5. Let (Ω, µ) be a finite probability space and X,Y : Ω → M := C be two

random variables. Define X
+· Y : Ω → C by (X

+· Y )(x) = X(x)
+· Y (x). Prove:

(1) E(X) =
∑

m∈M mµX(m).
(2) E(X + Y ) = E(X) + E(Y ).
(3) E(XY ) = E(X)E(Y ) if X and Y are independent. The converse12 is false.

Begin
Lect. 5

2. Perfect Secrecy

2.a. General assumptions. Let K := (P,C,K,E,D) be a symmetric cryptosystem
and µK a probability distribution on K (the probability distribution of choosing an en-
cryption key). For the rest of the section we make the following assumptions:

(1) P,K,C are finite. We know that |C| ≥ |P | since Ee is injective.
(2) µK(e) > 0 for all e ∈ K.
(3) All Ee are maps. Identify e with Ee.
(4) P × K → C, (p, e) 7→ e(p) is surjective.
(5) Define Ω := P ×K to be a set of events: (p, e) is the elementary event, where the

plain text p ∈ P is encrypted using the key e ∈ K. Any probability distribution
µP on P defines a distribution on Ω:

µ(p, e) := µ((p, e)) := µP (p)µK(e).

Conversely: µP , µK are then the probability distributions of the random variables13

P : Ω → P, (p, e) 7→ p and K : Ω → K, (p, e) 7→ e.
(6) The random variables P and K are independent, i.e., µP,K = µ (in words: the

choice of the encryption key is independent from the plaintext).

Recall that, by definition, the distribution of the random variable C : Ω → C, (p, e) 7→
e(p) is given by

µC(c) =
∑

(p,e)∈Ω
e(p)=c

µ(p, e).

Exercise 2.1. Let P = {a, b} with µP (a) = 1
4

and µP (b) = 3
4
. Let K := {e1, e2, e3}

with µK(e1) = 1
2
, µK(e2) = µK(e3) = 1

4
. Let C := {1, 2, 3, 4} and E be given by the

following encryption matrix:

E a b
e1 1 2
e2 2 3
e3 3 4

12German: Umkehrung
13Using P and K as names for the random variables is a massive but very useful abuse of language.

We will do the same for C in a moment.
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Compute the probability µC and the conditional probability µP |C .

2.b. Perfect secrecy.

Definition 2.2 (Shannon 1949). K is called perfectly secret14 for µP (or simply
perfect for µP ) if P and C are independent, i.e.

∀p ∈ P, c ∈ C : µP (p) = 0 or µC|P (c | p) = µC(c),

or, equivalently,

∀p ∈ P, c ∈ C : µC(c) = 0 or µP |C(p | c) = µP (p).

K is called perfectly secret if it is perfectly secret for any probability µP .

Exercise 2.3. Is the cryptosystem K defined in Exercise 2.1 perfectly secret for the
given µP ?

Remark 2.4.

(1) Perfect secrecy means that the knowledge of the ciphertext c does not yield any
information on the plaintext p.

(2) Choosing µP

• to be the natural (letter) distribution in a human language tests the security
property OW.

• with µP (p0) = µP (p1) = 1
2

and µP (p) = 0 for p ∈ P \{p0, p1} tests the security
property IND.

2.c. Transitivity.

Definition 2.5. We call E (or K) transitive (free, regular) if for each pair (p, c) ∈
P × C there is one (at most one, exactly one) e ∈ K with e(p) = c.

Remark 2.6. Regarding each p ∈ P as a map p : K → C, e 7→ e(p) we have:

(1) E is transitive ⇐⇒ ∀p ∈ P : p surjective. This implies |K| ≥ |C|.
(2) E is free ⇐⇒ ∀p ∈ P : p injective. This implies |K| ≤ |C|.
(3) E is regular ⇐⇒ ∀p ∈ P : p bijective. This implies |K| = |C|.

Remark 2.7.

(1) |P | = |C| iff e : P → C is bijective for one (and hence for all) e ∈ K.
(2) Let E be free then: |K| = |C| iff all p : K → C are bijective.

Proof. The first statement follows simply from the injectivity of the maps e : P → C.
For the second statement again use the injectivitiy argument in Remark 2.6.(2). ¤

Lemma 2.8. The cryptosystem K is perfectly secret implies that K is transitive.

14German: perfekt sicher (dies ist keine wörtliche Übersetzung)



2. PERFECT SECRECY 11

Proof. Assume that E is not transitive. So there exists a p ∈ P with p : K → C is
not surjective. Choose a c ∈ C \ p(K). Then µP |C(p | c) = 0 (by definition of µC). Since
P × K → C is surjective there exists a pair (p′, e) ∈ Ω satisfying e(p′) = c. Choose µP

such that µP (p), µP (p′) > 0. Since µK(e) > 0 it follows that µC(c) > 0. Hence µP (p) > 0
and µP |C(p, c) = 0 < µP (p)µC(c), i.e., K is not perfectly secret. ¤

Corollary 2.9. The cryptosystem K is perfectly secret and free implies that it is even
regular and |K| = |C|. ¤

Example 2.10. These are examples of regular cryptosystems:

(1) |P | = |C|: Let G be a finite group and set P = C = K := G. Define e(p) = ep
(or e(p) = pe).

(2) |P | = 2: P = {p, p′}, K = {e1, e2, e3, e4}, C = {c1, c2, c3, c4} and

E p p′

e1 c1 c2

e2 c2 c1

e3 c3 c4

e4 c4 c3

Example 2.11. This examples shows that µC might in general depend on µP and µK :
Take P = {p1, p2}, C = {c1, c2}, K = {e1, e2}. Let µP (p1) and µK(e1) each take one of
three possible values given by the right table (suffices to determine µP , µK , and µC):

E p p′

e1 c1 c2

e2 c2 c1

µC(c1) µK(e1)

1
4

1
2

3
4

1
4

10
16

1
2

6
16

µP (p1)
1
2

1
2

1
2

1
2

3
4

6
16

1
2

10
16

Remark 2.12. We can make the observation in the above right table precise:

(1) If |P | = |C| then: µP uniformly distributed implies µC uniformly distributed.
(2) If E is regular then: µK uniformly distributed implies µC uniformly distributed.

Proof. Keeping Remark 2.7 in mind:

(1) |P | = |C| and µP constant implies that

µC(c) =
∑

e∈K

µ(E−1
e (c), e) =

∑

e∈K

µP (E−1
e (c))µK(e) = const.

(2) Since by the regularity assumption p is bijective for all p ∈ P and µK is constant
we conclude that

µC(c) =
∑

p∈P

µ(p, p−1(c)) =
∑

p∈P

µP (p)µK(p−1(c)) = µK(p−1(c)) = const.

¤
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2.d. Characterization. In the rest of the subsection assume E free. In particular
|K| ≤ |C|, there is no repetition in any column of the encryption matrix, and transitivity
is equivalent to regularity.

Lemma 2.13. Let E be regular and µP arbitrary. K is perfectly secret for µP iff

∀e ∈ K, c ∈ C : µK,C(e, c) = 0 or µK(e) = µC(c).

Proof. Recall: K perfectly secret for µP means that

∀p ∈ P, c ∈ C : µP (p) = 0 or µC|P (c | p) = µC(c).

“ =⇒ ”: Assume µK,C(e, c) > 0. Then there exists a p ∈ P with e(p) = c and µP (p) > 0.
This p is unique since e is injective. Moreover e is uniquely determined by p and c (E is
free). Hence, the independence of P and K implies

(1) µP (p)µK(e) = µP,K(p, e) = µP,C(p, c) = µC|P (c | p)µP (p).

From µP (p) > 0 and the perfect secrecy of K we deduce that µK(e) = µC(c).
“⇐=”: Let c ∈ K and p ∈ P with µP (p) > 0. The regularity states that there exists exactly
one e ∈ K with e(p) = c. The general assumption µK(e) > 0 implies µK,C(e, c) > 0 and
hence µK(e) = µC(c). Formula (1) implies µC(c) = µC|P (c | p). ¤

Theorem 2.14. Let E be regular. Then K is perfectly secure for µP if µK is uniformly
distributed.

Proof. Remark 2.12 implies that µC is uniformly distributed. From |K| = |C| we
deduce that µK(e) = µC(c). Now apply Lemma 2.13. ¤

Begin
Lect. 6 Theorem 2.15. Let E be regular (free would suffice) and µP arbitrary. If K is perfectly

secure for µP and µC is uniformly distributed then µK is uniformly distributed.

Proof. Let e ∈ K. Choose p ∈ P with µ(p) > 0 and set c := e(p). Then µK,C(e, c) >
0. Hence µK(e) = µC(c) by Lemma 2.13. (Freeness would suffice to prove “ =⇒ ” in
Lemma 2.13.) ¤

Theorem 2.16 (Shannon, 1949). Let K be regular and15 |P | = |C|. The following
statements are then equivalent:

(1) K is perfectly secure for µ̄P .
(2) K is perfectly secure.
(3) µK is uniformly distributed.

Proof.

(3) =⇒ (2): Theorem 2.14.
(2) =⇒ (1): Trivial.

(1) =⇒ (3): Let µP = µ̄P
2.12
=⇒ µC uniformly distributed

2.15
=⇒ µK uniformly distributed.

¤

15We will succeed in getting rid of the assumption |P | = |C| later in Theorem 4.21.
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Example 2.17. The Vernam one-time pad (OTP) introduced in 1917 is perfectly
secure:

• P = C = K = G = ((Z/2Z)n, +), i.e., bit-strings of length n.
• e : p 7→ p + e, i.e., bitwise addition (a.k.a. XOR-addition).

Exercise 2.18. Construct an example showing that the converse of Theorem 2.14 is
false and that the condition |P | = |C| in Shannon’s Theorem 2.16 cannot be simply16

omitted.

3. Entropy

Let X : Ω → X be a finite random variable17, i.e., with X finite, say of cardinality n.

3.a. Entropy.

Definition 3.1. The entropy of X is defined as

H(X) := −
∑

x∈X

µX(x) lg µX(x),

where lg := log2.

As we will see below, the entropy is an attempt to quantify (measure) the diversity of
X, the ambiguity of X, our uncertainty or lack of knowledge about the outcome of the
“experiment” X.

Remark 3.2.

(1) Since lima→0 a lg a = 0 we set 0 lg 0 := 0. Alternatively one can sum over all x ∈ X
with µX(x) > 0.

(2) H(X) =
∑

x∈X µX(x) lg 1
µX(x)

.

(3) H(X) ≥ 0. H(X) = 0 iff µX(x) = 1 for an x ∈ X.

Proof. (3) −a lg a ≥ 0 for a ∈ [0, 1] and −a lg a = 0 iff a = 0 or a = 1. (The unique
maximum in the interval [0, 1] has the coordinates (1

e
, 1

e ln(2)
) ≈ (0.37, 0.53).) ¤

Example 3.3.

(1) Throwing a coin with µX(0) = 3
4

and µX(1) = 1
4
:

H(X) =
3

4
lg

4

3
+

1

4
lg 4 =

3

4
(2 − lg 3) +

1

4
2 = 2 − 3

4
lg 3 ≈ 0.81.

Let n := |X| < ∞ by the above general assumption.

16However, Theorem 4.21 shows that it can be replaced by the necessary condition of Corollary 2.9.
17We deliberately denote M by X as no confusion should occur!
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(2) If X (i.e., µX) is uniformly distributed then

H(X) =
n∑

i=1

1

n
lg n = lg n.

We will see later in Theorem 3.14 that H(X) ≤ lg n and H(X) = lg n if and only if µX

is uniformly distributed.

Example 3.4. Let X = {x1, x2, x3} with µX(x1) = 1
2
, µX(x2) = µX(x3) = 1

4
. “En-

code”18 x1 as 0, x2 as 10, and x3 as 11. The average bit-length of the encoding is

µX(x1) · 1 + µX(x2) · 2 + µX(x3) · 2 =
1

2
+

1

2
+

1

2
=

3

2
,

which in this case coincides with the entropy H(X).

3.b. Encodings.

Definition 3.5. A map f : X → {0, 1}• is called a encoding19 of X if the extension
to X• defined by

f : X• → {0, 1}•, x1 · · ·xn 7→ f(x1) · · · f(xn)

is an injective map.

Example 3.6. Suppose X = {a, b, c, d}, and consider the following three different
encoding candidates:

f(a) = 1 f(b) = 10 f(c) = 100 f(d) = 1000
g(a) = 0 g(b) = 10 g(c) = 110 g(d) = 111
h(a) = 0 h(b) = 01 h(c) = 10 h(d) = 11

f and g are encodings but h is not.

• An encoding using f can be decoded by starting at the end and moving backwards:
every time 1 appears signals the end of the current element.

• An encoding using g can be decoded by starting at the beginning and moving
forward in a simple sequential way by cutting off recognized bit-substrings. For
example, the decoding of 10101110 is bbda.

• h(ac) = 010 = h(ba).

For an encoding using f we could have started from the beginning. But to decide the end
of an encoded substring we need to look one step forward. And decoding from the end
forces us to use memory.

Maps like g that have the property of allowing a simple sequential encoding are called
prefix-free: An encoding g is prefix-free if there do not exist two elements x, y ∈ X and
a string z ∈ {0, 1}• such that g(x) = g(y)z.

18See next definition.
19German: Kodierung. Do not confuse encoding with encryption.
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Let ℓ : {0, 1}• → N0 denote the length function (cf. Definition 3.1.(1)). Then ℓ ◦ f ◦ X
is the random variable with expected value

ℓ(f) :=
∑

x∈X

µX(x)ℓ(f(x)),

expressing the average length of the encoding f .
The idea is that the entropy of X should be ℓ(f), where f is the “most efficient” encoding

of X. We would expect f to be most efficient if an event with probability 0 < a < 1 should
be encoded by a bit-string of “length” − lg a = lg 1

a
. In Example 3.4 we encoded an event

with probability 1
2n by a bit-string of length n = − lg 1

2n .

Theorem 3.7. There exists an encoding f with H(X) ≤ ℓ(f) ≤ H(X) + 1.

Proof. Huffman’s algorithm produces such an f . We illustrate it on the next
example. ¤

Example 3.8 (Huffman’s algorithm). Suppose X := {a, b, c, d, e} has the following
probability distribution: µX(a) = 0.05, µX(b) = 0.10, µX(c) = 0.12, µX(d) = 0.13, and
µX(e) = 0.60. View the points of X as the initial vertices of some graph. Take two
vertices x, y with lowest probability µX(x), µX(y) and connect them to a new vertex and
label the two directed edges by 0, 1 respectively. Assign to the new vertex the probability
µX(x) + µX(y). Repeat the process forgetting x and y until creating the edge assigned the
probability 1.

This gives the following prefix-free encoding table:

x f(x)
a 000
b 001
c 010
d 011
e 1

The average length of the encoding is

ℓ(f) = 0.05 · 3 + 0.10 · 3 + 0.12 · 3 + 0.13 · 3 + 0.60 · 1 = 1.8,

approximating the value of the entropy H(X) ≈ 1.74 as described by the previous theorem.

3.c. Entropy of a natural language.

Example 3.9. Let X be a random variable with values in X = A = {a, . . . , z}.
(1) If µX is uniformly distributed then H(X) = lg 26 ≈ 4.70 (i.e., more than 4 bits

and less than 5 bits).
(2) If µX is the distribution of the letters in the English language then H(X) ≈ 4.19.

Begin
Lect. 7

Definition 3.10. Let A be an alphabet.
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(1) If X is a random variable with X ⊂ Aℓ then we call

R(X) := lg n − H(X)

the redundancy of X. Since 0 ≤ H(X) ≤ lg n we deduce that 0 ≤ R(X) ≤ lg n.
By definition H(X) + R(X) = lg n.

(2) Let Lℓ ⊂ Aℓ be the random variable of ℓ-grams in a (natural) language L ⊂ A•.
The entropy of L (per letter) is defined as

HL := lim
ℓ→∞

H(Lℓ)

ℓ
.

The redundancy of L (per letter) is defined as

RL := lg |A| − HL = lim
ℓ→∞

R(Lℓ)

ℓ
.

Example 3.11. For L = English we estimate H(L1) ≈ 4.19, H(L2) ≈ 3.90. Empirical
data shows that

1.0 ≤ HL := HEnglish ≤ 1.5.

For HL = 1.25 ≈ 27% · lg |A| the redundancy RL = REnglish = 4.70 − 1.25 = 3.45 ≈
73% · lg |A|.
To understand what this means let us consider the following model for L: Assume L ∩ Aℓ

contains exactly tℓ equally probable texts (or text beginnings), while all other texts have
probability zero. Then from HL = limℓ→∞

lg tℓ
ℓ

= 1.25 we conclude that tℓ ≈ 21.25·ℓ for
ℓ ≫ 0. For example, t10 ≈ 5793 compared to the |A10| = 2610 ≈ 1.41 · 1014 possible
10-letter strings.

Remark 3.12. A single text has no entropy. Entropy is only defined for a language.

3.d. Further properties.

Definition 3.13. Let X : Ω → X and Y : Ω → Y be two finite random variables.
Define

(1) the joint entropy20

H(X,Y ) := −
∑

x,y

µX,Y (x, y) lg µX,Y (x, y).

(2) the conditional entropy or equivocation21

H(X | y) := −
∑

x

µX|Y (x | y) lg µX|Y (x | y)

and
H(X | Y ) :=

∑

y

µY (y)H(X | y).

20German: Gemeinsame Entropie
21German: Äquivokation = Mehrdeutigkeit
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(3) the transinformation22

I(X,Y ) := H(X) − H(X | Y ).

Theorem 3.14.

(1) H(X) ≤ lg n. Equality holds iff µX is uniformly distributed.
(2) H(X,Y ) ≤ H(X) + H(Y ). Equality holds iff X,Y are independent.
(3) H(X | Y ) ≤ H(X) and equivalently I(X,Y ) ≥ 0. Equality holds iff X,Y are

independent.
(4) H(X | Y ) = H(X,Y ) − H(Y ).
(5) H(X | Y ) = H(Y | X) + H(X) − H(Y ).
(6) I(X,Y ) = I(Y,X).

Proof. (1) and (2) are exercise. For (2) use Jensen’s inequality (cf. Lemma A.1.1).
(4) is a simple exercise. (3) follows from (2) and (4). (5) follows from (4) (since H(X,Y ) =
H(Y,X), by definition) and (6) from (5). ¤

Example 3.15. Let X be a random variable and Xn the random variable describing
the n-fold independent repetition23 of the “experiment” X. Then

H(Xn) = nH(X).

• If X describes throwing a perfect coin (i.e., µX is uniformly distributed) then
H(Xn) = H(X, . . . , X︸ ︷︷ ︸

n

) = n.

• If X describes throwing the coin of Example 3.3(1) then H(Xn) ≈ 0.81 · n.

4. Entropy in cryptosystems

For the rest of the chapter (course) let K = (P,C,K,E,D) be a symmetric cryptosystem
satisfying

(1) P,K,C are finite. In particular |C| ≥ |P | as Ee is injective by Exercise 1.4.2.
(2) Ee is a map.
(3) P and K are independent.

Lemma 4.1. The above assumptions on K imply:

(1) H(P,K) = H(K,C) = H(P,K,C)
(2) H(C) ≥ H(C | K) = H(P | K) = H(P ).
(3) H(K | C) = H(P ) + H(K) − H(C).
(4) I(K,C) = H(C) − H(P ) ≥ 0.

Proof. E is injective and P,K are independent. ¤

Definition 4.2. One calls

22German: Transinformation = gegenseitige Information
23If you are still in doubt of what this means then interpret X as the event space and define Xn as

the product space with the product distribution.
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• H(K | C) the key equivocation24.
• I(K,C) the key transinformation.

Remark 4.3.

• The statement H(P ) ≤ H(C) is a generalization of Remark 2.12: If |P | = |C|
then µP uniformly distributed implies µC uniformly distributed.

• H(P ) < H(C) is possible, e.g., when K is perfectly secret, |P | = |C|, and P not
uniformly distributed.

Exercise 4.4. Construct under the above assumption a cryptosystem with H(K) <
H(C).

Definition 4.5. Denote by

R(P ) := lg |P | − H(P )

the redundancy of P .

Theorem 4.6. Let |P | = |C|. Then

H(K) ≥ H(K | C) ≥ H(K) − R(P )

and
R(P ) ≥ I(K,C) ≥ 0.

Proof. Let |P | = |C| = n. From H(C) ≤ lg n we deduce that

H(K | C) ≥ H(K) + H(P ) − lg n = H(K) − R(P )

and
I(K,C) ≤ lg n − H(P ) = R(P ).

¤

Example 4.7. Reconsider Example 2.11 where P = {p1, p2}, C = {c1, c2}, K =
{e1, e2}, and

E p p′

e1 c1 c2

e2 c2 c1

Choose the distributions µP = (1
4
, 3

4
), µK = (1

4
, 3

4
). Then µC = (10

16
, 6

16
), H(P ) = H(K) ≈

0.81, and H(C) ≈ 0.95. Further R(P ) = 1 − H(P ) ≈ 0.19 and H(K) − R(P ) ≈ 0.62.
Hence

0.62 ≤ H(K | C) ≤ 0.81

and
0 ≤ I(K,C) ≤ 0.19.

24German: Schlüsseläquivokation bzw. -mehrdeutigkeit
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Indeed,

H(K | C) = H(P ) + H(K) − H(C) ≈ 0.67 and

I(K,C) = H(C) − H(P ) ≈ 0.14.

Remark 4.8. Interpreting Theorem 4.6:

• The redundancy of P is a (good) upper bound for the key transinformation.
• To get a nonnegative lower bound for the key equivocation H(K | C) ≥ H(K) −

R(P ) we need at least as much key entropy as redundancy in P .
• If P is uniformly distributed (e.g., random data) then R(P ) = 0. It follows that

H(K | C) = H(K), i.e., I(K,C) = 0.

Example 4.9. Let P = C = An and P = Ln for a language L with entropy HL and
redundancy RL per letter. For n big enough we have

H(K | C) ≥ H(K) − R(P ) ≈ H(K) − nRL.

Interpretation: If the key entropy H(K) is fixed and n is allowed to grow (e.g., repeated
encryption with the same key) then as n increases the entropy of the key is exhausted25.

Definition 4.10. The number

n0 := ⌈H(K)

RL

⌉

is called the unicity distance26.

Remark 4.11. The higher the redundancy of the language the quicker a key is ex-
hausted.

Example 4.12. For |A| = 26 and RL = 3.45 (as for the English language) one obtains:

type of the symmetric cryptosystem |K| H(K) n0

monoalphabetic substitution 26! ≈ 288.4 ≈ 88.4 26
permutation of 16-blocks 16! ≈ 244.3 ≈ 44.3 13

DES 256 56 17
AES 2128 128 38

If we consider n = 20 for the monoalphabetic substitution then the key equivocation

H(K | C) ≥ H(K) − R(P ) ≈ 88.4 − 20 · 3.45 = 19.4

and 219.4 ≈ 691802.
Begin
Lect. 8

Remark 4.13. There are several ways to increase the unicity distance despite short
key lengths / small key entropies:

• Reduce the redundancy of P by compressing (zipping) the text.

25German: aufgebraucht
26German: Unizitätsmaß
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Note that with RL → 0 imply n0 → ∞. We now estimate the maximum compression
factor b where a text of length n 7→ a text of length n

b
, b ≥ 1. The “compressed” language

L′ has the entropy per letter:

HL′ := lim
n→∞

H(Ln)

n/b
= b · HL ≤ lg |A|.

Hence b ≤ lg |A|
HL

. For L the English language this means that b ≤ 4.70
1.25

≈ 3.76.
The following can be much more cheaper than compression:

• Find ways to “cover27” the redundancy of P against attackers with limited comput-
ing resources: Combination of substitution and Feistel ciphers (see [Wik11c]
and [MvOV97, §7.4.1] and Chapter 4).

• Find ways to “bloat28” the key entropy against attackers with limited computing
resources: Autokey cipher (Figure 4) and pseudo random sequences (see next
chapter).

Plaintext: das alphabet wechselt staendig

Key: key dasalpha betwechs eltstaen

Ciphertext: neq dlhhlqla xivdwgsl wetwgdmt

Figure 1. Autokey variant of Vigenère’s cipher

4.a. Free systems.

Definition 4.14. Analogously one calls

• H(P | C) the plaintext equivocation29.
• I(P,C) the plaintext transinformation.

Lemma 4.15. Setting H0(K) := H(K | PC). Then

(1) H(P,K) = H(P,C) + H0(K).
(2) H(K) = H(C | P ) + H0(K).
(3) H(K | C) = H(P | C) + H0(K).

Further:
K is free ⇐⇒ H0(K) = 0 ⇐⇒ I(K,PC) = H(K).

In particular: The key equivocation and the plaintext equivocation coincide in free cryp-
tosystems.

Remark 4.16. We interpret

(1) H0(K) as the unused key entropy.
(2) I(K,PC) as the used key entropy.

27German: verschleiern
28German: aufblähen
29German: Klartextäquivokation bzw. -mehrdeutigkeit
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Proof of Lemma 4.15. Verify (1) as an exercise by a straightforward calculation
using the definitions. (2) follows from subtracting H(P ) from (1) and use H(K | P ) =
H(K), which is a consequence of the independence of P and K. To obtain (3) subtract
H(C) from (1) and use H(P,K) = H(K,C) (Lemma 4.1.(1)). The equivalence is an
exercise. ¤

Theorem 4.17. Let K be a free cryptosystem. Then:

(1) H(P | C) = H(K | C) = H(P ) + H(K) − H(C).
(2) I(P,C) = H(C) − H(K).
(3) H(K) ≤ H(C).

Proof.

(1) follows from Lemma 4.15 and Lemma 4.1.(3). For the rest we verify that

0 ≤ I(P,C) := H(P ) − H(P | C)
4.15.(3)

= H(P ) − H(K | C)
(1)
= H(C) − H(K).

¤

Remark 4.18. The statement H(K) ≤ H(C) is a generalization of Remark 2.12.(2),
but without the regularity assumption:
If K is regular then: µK uniformly distributed implies µC uniformly distributed.

Corollary 4.19. Let K be a free system.

(1) If |P | = |C| then H(P | C) ≥ H(K) − R(P ).
(2) If |K| = |C| then I(P,C) ≤ R(K).

Proof. (1) follows from H(P | C) = H(K | C) and Theorem 4.6. For (2) let |K| =
|C| =: n. Then

I(P,C) = H(C) − H(K) ≤ lg n − H(K) = R(K).

¤

Example 4.20. For P,C,K of Exercise 2.1 we compute:

H(P ) =
1

4
lg 4 +

3

4
lg

4

3
=

1

4
· 2 +

3

4
· (2 − lg 3) = 2 − 3

4
lg 3 ≈ 0.81 (maximum is 1).

H(K) = 1.5 (maximum is lg 3 ≈ 1.58).

H(C) ≈ 1.85 (maximum is 2).

And since K is free:

H(P | C) = H(P ) + H(K) − H(C) ≈ 0.46 ≈ 57% · H(P ),

I(P,C) = H(C) − H(K) ≈ 0.35 ≈ 43% · H(P ),

R(P ) ≈ 1 − 0.81 ≈ 0.19, and

n0 = ⌈H(K)

R(P )
⌉ = ⌈ 1.5

0.19
⌉ = 8.
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If µP would have been uniformly distributed then we recompute:

H(P ) = 1,

H(C) ≈ 1.91,

H(P | C) ≈ 0.59,

I(P,C) ≈ 0.41,

4.b. Perfect systems. The powerful notion of entropy offers us another characteri-
zation of perfect systems but without unnecessarily assuming that |P | = |C| as in Theo-
rem 2.16.

Theorem 4.21. The following statements are equivalent (under the general assump-
tions made at the beginning §4):

(1) K is perfect for µP , i.e., P and C are independent.
(2) I(P,C) = 0.
(3) H(P,C) = H(P ) + H(C).
(4) H(C | P ) = H(C).
(5) H(P | C) = H(P ).

In the case of freeness (and hence of regularity by Lemma 2.8) of the cryptosystem the list
of equivalences additionally includes:

(6) H(K) = H(C).
(7) H(K | C) = H(P ).

The last point implies that H(K) ≥ H(P ).

Proof. The equivalence of (1)-(5) is trivial. (6) is (4) and the equality H(K) = H(C |
P ) (Lemma 4.15.(2)). (7) is (5) and the equality H(K | C) = H(P | C) (Lemma 4.15.(3)).

¤

Remark 4.22. Compare the statement H(K) = H(C) with that of Lemma 2.13:
... µ(e) = µ(c) for all e ∈ K, c ∈ C.

Corollary 4.23 (Shannon). Let K be a free cryptosystem. Then K is perfectly
secret for µP and µC is uniformly distributed if and only if |K| = |C| and µK is uniformly
distributed (compare with Theorems 2.15 and 2.14).

Proof. =⇒ : Set n := |C|. Since µC is uniformly distributed we know that H(C) =
lg n. Freeness of K implies that |K| ≤ |C| = n. With the perfect secrecy of K for µP

and the freeness of K we conclude that H(K) = H(C) = lg n by Theorem 4.21.(6). Hence
µK is uniformly distributed and |K| = |C| by Theorem 3.14.(1) (giving another proof of
Corollary 2.9).
⇐=: Define n := |K| = |C|. µK uniformly distributed implies that lg n = H(K) ≤
H(C) ≤ lg n by Theorem 4.17.(3). Hence H(K) = H(C) = lg n and K is perfectly secure
for µP by Theorem 4.21.(6). ¤



CHAPTER 3

Pseudo-Random Sequences

1. Introduction

We want to distinguish random sequences from pseudo-random sequences, where we
replace numbers by bits in the obvious way.

First we list what we expect from the word “random”:

• Independence.
• Uniform distribution.
• Unpredictability.

Here is a small list of possible sources of random sequences of bits coming from a
physical source:

• Throwing a perfect coin.
• Some quantum mechanical systems producing statistical randomness.
• Frequency irregularities of oscillators.
• Tiny vibrations on the surface of a hard disk.
• ... (see /dev/random on a Linux system).

A pseudo-random generator is, roughly speaking, an algorithm that takes a usually
short random seed and produces in a deterministic way a long pseudo-random sequence.

Now we list some advantages of a pseudo-random generator:

• Simpler than real randomness (produceable using software instead of hardware).
• Reconstructable if the seed is known (e.g., an exchange of a long key can be

reduced to the exchange of a short random seed).

The disadvantages include:

• The seed must be random.
• Unpredictability is violated if the seed is known.

Possible applications:

• Test algorithms by simulating random input. An unpredictability would even be
undesirable in this case as one would like to be able to reconstruct the input (for
the sake of reconstructing a computation or an output).

• Cryptography: Generation of session keys, stream ciphers (the seed is part of the
secret key), automatic generations of TANs and PINs, etc.

Begin
Lect. 923
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2. Linear recurrence equations and pseudo-random bit generators

Let K be a field, ℓ ∈ N, and c =




c0
...

cℓ−1


 ∈ Kℓ×1 with c0 6= 0.

Definition 2.1. The linear recurrence (or recursion) equation (LRE) of degree
ℓ ≥ 1

(2) sn+ℓ =
(
sn · · · sn+ℓ−1

)
·




c0
...

cl−1


 (n ≥ 0)

defines1 for the initial value t =
(
t0 · · · tℓ−1

)
∈ K1×ℓ a sequence s = (sn) in K with

si = ti for i = 0, . . . , ℓ − 1. We call t(n) :=
(
sn · · · sn+ℓ−1

)
the n-th state vector

(t(0) = t). We write s = 〈c, t〉.

Example 2.2. Taking K = F2, ℓ = 4, c =




1
1
0
0


 and t =

(
1 0 1 0

)
we get:

s = 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, | 1, 0, 1, 0, . . .

Remark 2.3. A linear recurrence equation over K = F2 (abbreviated by F2-LRE) of
degree ℓ is nothing but an ℓ-bit Linear Feedback Shift Register (LFSR) [Wik10f].
It is an example of a linear pseudo-random bit generator (PRBG) (cf. Example 5.2).
It is one among many pseudo-random bit generators [Wik10g].

Definition 2.4.

(1) Define χ := χc := xℓ − cℓ−1x
ℓ−1 − · · · − c1x − c0 ∈ K[x].

(2) s is called k-periodic (k ∈ N) if si+k = si for all i ≥ 0, or equivalently, t(i+k) = t(i)

for all i ≥ 0.
(3) c is called k-periodic (k ∈ N) if s = 〈c, t〉 is k-periodic for all t ∈ K1×ℓ.
(4) If s (resp. c) is k-periodic for some k ∈ N then denote by per(s) (resp. per(c)) the

smallest such number and call it the period length. If such a k does not exist
then set per s := ∞ (resp. per c := ∞).

Remark 2.5.

(1) sn+ℓ = t(n) · c.

1We identified the resulting 1 × 1 product matrix with its single entry.
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(2) t(n) = t(n−1) · C = t · Cn with

C :=




0 · · · · · · 0 c0

1 0 · · · 0 c1

0
. . . . . .

...
...

...
. . . . . . 0 cℓ−2

0 · · · 0 1 cℓ−1




.

(3) 〈c, t〉 is k-periodic if and only if t · Ck = t.
(4) c is k-periodic if and only if Ck = Iℓ.
(5) per〈c, t〉 = min{k > 0 | t · Ck = t}.
(6) per c = min{k > 0 | Ck = Iℓ}.
(7) 〈c, t〉 is k-periodic iff per〈c, t〉 | k.
(8) per c = lcm{per〈c, t〉 | t ∈ K1×ℓ}.
(9) per〈c, 0〉 = 1.

(10) There exists a (row) vector t ∈ K1×ℓ with per〈c, t〉 = per c.
(11) C is the companion matrix2 of χ. Hence, χ is the minimal polynomial and therefore

also the characteristic polynomial of C (as its degree is ℓ).
(12) C is a regular matrix since c0 6= 0, i.e., C ∈ GLℓ(K).
(13) per c = ord C in GLℓ(K).
(14) GLℓ and its cyclic subgroup 〈C〉 generated by the matrix C both act on the vector

space K1×ℓ. The orbit3 t · 〈C〉 = {t(i) | i ≥ 0} of t is nothing but the set of all
reachable state vectors.

(15) per〈c, t〉 = |t · 〈C〉|.
Proof. (1)-(14) are trivial except maybe (10) which is an exercise. To see (15) note

that the state vectors t(i) with 0 ≤ i < per〈c, t〉 are pairwise distinct: t(i) = t(j) for
0 ≤ i ≤ j < per〈c, t〉 means that tCi = tCj and hence tCj−i = t with j − i < per〈c, t〉.
Finally this implies that j = i. ¤

2.a. Linear algebra. Let K be a field, V a nontrivial finite dimensional K vector
space, ϕ ∈ EndK(V ), and 0 6= v ∈ V .

Recall, the minimal polynomial mϕ is the unique monic4 generator of the principal
ideal Iϕ := {f ∈ K[x] | f(ϕ) = 0 ∈ EndK(V )}, the so-called vanishing ideal of ϕ.

Analogously, the minimal polynomial mϕ,v with respect to v is the unique monic
generator of the principal ideal Iϕ,v := {f ∈ K[x] | f(ϕ)v = 0 ∈ V }, the so-called
vanishing ideal of ϕ with respect to v.

Exercise 2.6. For 0 6= v ∈ V let Uϕ,v := 〈ϕi(v) | i ∈ N0〉 ≤ V . Then

(1) mϕ,v = mϕ|Uϕ,v
.

(2) dimK Uϕ,v = min{d ∈ N | (v, ϕ(v), . . . , ϕd(v)) are K-linearly dependent} ≥ 1.

2German: Begleitmatrix
3German: Bahn
4German: normiert
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(3) deg mϕ,v = dimK Uϕ,v.
(4) mϕ = lcm{mϕ,v | 0 6= v ∈ V }. This gives an algorithm to compute the minimal

polynomial of ϕ as the lcm of at most n minimal polynomials mϕ,v1 , . . . ,mϕ,vℓ
,

where ℓ = dimK V .
(5) α ∈ EndK(V ) is an automorphism if and only if mα(0) 6= 0 ∈ K. This gives an

algorithm to compute the inverse of α.

Definition 2.7. Let 0 6= f ∈ K[x]. If f(0) 6= 0 define

ord f := min{k > 0 : f | xk − 1} or ∞.

If f(0) = 0, then write f = xrf̄ with f̄(0) 6= 0 and define

ord f := ord f̄ .

Definition 2.8. Let α ∈ AutK(V ) and 〈α〉 the cyclic subgroup of AutK(V ) generated
by α. By

ord α := |〈α〉|
denote the order of the group element α. For v ∈ V denote the orbit of v under the
action of the cyclic subgroup 〈α〉 as usual by

〈α〉v := {αi(v) | i ∈ N0}.

Proposition 2.9.

(1) ord mα = ord α.
(2) ord mα,v = |〈α〉v| for v 6= 0.
(3) If mα is irreducible then |〈α〉v| = ord mα for all v 6= 0.
(4) If K is finite and mα irreducible then ord mα | |V | − 1.
(5) If there exists a vector v ∈ V with 〈α〉v = V \ {0} then mα is irreducible.

Proof. (1) follows from the equivalence

αk = idV ⇐⇒ (xk − 1)(α) = 0 ⇐⇒ mα | xk − 1.

(2) If |〈α〉v| < ∞ then there exists 0 ≤ i < j with αi(v) = αj(v). Hence, αj−i(v) = v.
Therefore (even if |〈α〉v| = ∞)

|〈α〉v| = min{k > 0 | αk(v) = v}
= min{k > 0 | (αk − idV )(v) = 0 ∈ V }
= min{k > 0 : mα,v|xk − 1}
= ord mα,v.

(3) If mα is irreducible then the statements mα,v | mα and deg mα,v > 0 are equivalent to
mα,v = mα. (2) completes the argument.
(4) follows from (3) which implies that the orbits of 〈α〉 in V \ {0} are all of the same
length.
(5) First note that if 〈α〉v = V \ {0} for one v ∈ V then also for all v ∈ V \ {0} (being
all elements of the orbit). In particular, Uα,v = V and hence mα,v = mα for all v 6= 0.
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If mα = gh we want to prove that either mα | g or mα | h: For v 6= 0 we obtain
0 = mα,v(α)(v) = (gh)(α)(v) = (g(α) ◦ h(α))(v) = g(α)(h(α)(v)). Hence, either h(α)(v) =
0 or v′ := h(α)(v) 6= 0 and g(α)(v′) = 0. In other words, either mα = mα,v | h or
mα = mα,v′ | g. ¤

2.b. Period length. Let V = K1×ℓ and t ∈ V \ {0}. Identify AutK(V ) with GLℓ(K)
in the obvious way. Viewing the regular matrix C (of Remark 2.5.(2)) as an automorphism
we get χ = mC . Define χt := mC,t.

Corollary 2.10. From the last theorem we easily deduce

(1) per c = ord χ.
(2) per〈c, t〉 = ord χt for t 6= 0.
(3) If χ is irreducible then per〈c, t〉 = per c for all t 6= 0.

And in case K = Fq (i.e., finite with q elements):

(4) If χ is irreducible then per c | qℓ − 1.
(5) If per c = qℓ − 1 then χ is irreducible.

Example 2.11. Let K = F2.

(1) Consider the 3-bit LFSR (i.e., of degree ℓ = 3) and maximum possible period
length qℓ − 1 = 8 − 1 = 7.

ctr χ irred. s orbit lengths
(1, 0, 0) x3 + 1 false 100|100, 110|110, 1|111 3 + 3 + 1
(1, 1, 0) x3 + x + 1 true 1001011|100 7
(1, 0, 1) x3 + x2 + 1 true 1001110|100 7
(1, 1, 1) x3 + x2 + x + 1 false 1001|100, 01|010, 1|111 4 + 2 + 1

(2) Consider the 4-bit LFSR (i.e., of degree ℓ = 4) and maximum possible period
length qℓ − 1 = 16 − 1 = 15.

ctr χ irred. s orbit lengths
(1, 1, 0, 0) x4 + x + 1 true 100010011010111|1000 15
(1, 0, 0, 1) x4 + x3 + 1 true 100011110101100|1000 15
(1, 1, 1, 1) x4 + x3 + x2 + x + 1 true 10001|1000, 01001|0100 5 + 5 + 5

10100|1010
...

...
...

...
...

Definition 2.12. We call a linear recurrence equation irreducible if χ is irreducible.
If moreover K = Fq is a finite field then we call the LRE transitive if per c = qℓ−1, where
ℓ is its degree.

Remark 2.13. There are faster ways to compute per c and to decide the transitivity
of LREs. Consider for example c = (1, 1, 0, 0)tr with χ = x4 + x + 1 in the above table.
Since χ is irreducible we know from the above corollary that ord χ | 15. It is obvious that
χ ∤ xk − 1 for k = 1, 3, 5 (these are the divisors of 15). Hence per c = ord χ = 15, the
maximal possible period length, i.e., the corresponding LFSR is transitive.
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Exercise 2.14. Classify all irreducible 4-bit LFSRs. How many of them are transitive?

Remark 2.15. The Mersenne twister [Wik10j] is a modern pseudo-random bit
generator with an impressive period length.

Begin
Lect. 10

3. Finite fields

3.a. Field extensions. Recall, if K ≤ L is a field extension, then L is a K-vector
space. The degree of the field extension K ≤ L is defined as the dimension of L as a
K-vector space:

[L : K] := dimK L.

For a 2-step field extension K ≤ L ≤ M the degree formula

[M : K] = [M : L] · [L : K]

is a direct consequence of the definition.
In what follows we only deal with finite field extensions K ≤ L, i.e., where

d := [L : K] < ∞.

For any element α ∈ L the d + 1 elements 1, α, . . . , αd are always K-linearly dependent,
which leads us to the next definition:

Definition 3.1. Let K ≤ L be a finite field extension an α ∈ L. The unique monic
generator of the vanishing (principal) ideal Iα,K := {f ∈ K[x] | f(α) = 0} is called the
minimal polynomial of α over the ground field K, and denoted by mα,K , or simply
mα, if no confusion can occur about the ground field K.

Remark 3.2. In the above definition the field L can be replaced by a (finite dimen-
sional) K-algebra L. This gives a common generalization of the two definitions mϕ and
mα,K above, where in the former case L = EndK(V ).

Remark 3.3. Let K ≤ L be a finite field extension and α ∈ L. The minimal polynomial
mα = mα,K satisfies the following properties:

(1) f(α) = 0 ⇐⇒ mα | f .
(2) mα is irreducible in K[x] and 1 ≤ deg mα ≤ d.
(3) If an irreducible monic polynomial f ∈ K[x] satisfies f(α) = 0 then f = mα.

We now recall Kronecker’s construction of field extensions:

Proposition 3.4. Let K be a field and f ∈ K[x]. The residue class K-algebra L :=
K[x]/〈f〉 is a field if and only if f is irreducible. In this case [L : K] = deg f and
mx̄ = mK,x̄ = f , where x̄ := x + 〈f〉 ∈ K[x]/〈f〉.

Example 3.5.

• Let f := x − a for a ∈ K. Then K[x]/〈f〉 ∼= K.
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• Let K be a subfield of R, e.g., K = Q or K = R. Then f = x2 + 1 is irreducible
and the field K[x]/〈f〉 is an extension of degree 2 over K with (1, x̄) as a K-basis
satisfying x̄2 = −1.

• Let K = F2 and f = x3 + x + 1. The degree 3 polynomial f is irreducible since it
has no roots in its field of definition F2. The field L := F2[x]/〈f〉 is an extension
of degree 3 over F2 with (1, x, x2) as an F2-basis5 and elements

L = {0, 1, x, x2, 1 + x, x + x2, 1 + x + x2, 1 + x2}.
Exercise 3.6. Prove that the F2-algebra L := F2[x]/〈x4+x2+1〉 is not a field. Find all

nonzero noninvertible elements in L. Show that x is invertible in L. Determine the minimal
polynomial mF2,x and show that it is reducible. Find all invertible elements different from
1 and invert them either by using their minimal polynomial (cf. Exercise 2.6) or by using
the extended Euclidian algorithm.

3.b. Order of field elements.

Remark 3.7. Let K be a field.

(1) Let f ∈ K[x] be irreducible and f 6= x. Then x̄ 6= 0 in L := K[x]/〈f〉 and
ord f = ord x̄ in the multiplicative group L∗ := (L \ {0}, ·).

(2) Let K ≤ L be a (finite) field extension and α ∈ L∗. Then ord mα,K = ord α in the
multiplicative group L∗.

Proof. (1) x̄k = 1 ⇐⇒ f | xk − 1.
(2) αk = 1 ⇐⇒ α is a root of xk − 1 ⇐⇒ mα,K | xk − 1. ¤

Corollary 3.8. Let K = Fq be the finite field with q elements and f ∈ Fq[x] of degree
n. Then

(1) f irreducible =⇒ ord f | qn − 1.
(2) ord f = qn − 1 =⇒ f irreducible.

Proof. We can assume that f is monic.
Case f(0) 6= 0:

Take V = K1×n and β ∈ AutK(V ) with mβ = f (e.g., β : t 7→ t · C, where C is the com-
panion matrix of f , which is due to f(0) 6= 0 regular). Now apply Proposition 2.9.(4),(5).
Case f(0) = 0:

(1) f = x is the only irreducible monic polynomial with f(0) = 0. By definition ord x
2.7
:=

ord 1 = 1.
(2) Let f = xrf̄ with deg f̄ ≤ n − 1. From (1) we deduce that ord f = ord f̄ | qn−1 − 1.
Hence ord f 6= qn − 1. ¤

Definition 3.9. Let K = Fq be a finite field with q elements and L a finite field
extension of Fq. We call

• a degree n polynomial f ∈ Fq[x] primitive if ord f = qn−1. Primitive polynomials
are irreducible by the above corollary.

5We suppress the ·̄.
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• an element α ∈ L∗ primitive6 if ord α = |L∗|, i.e., if L∗ = 〈α〉 := {αi | i ∈ N0}.

Remark 3.10. Let K = Fq a finite field with q elements.

(1) Let f ∈ Fq[x] be a primitive polynomial and L := Fq[x]/〈f〉. Then x̄ is a primitive
element of L.

(2) If Fq ≤ L is a finite field extension then α ∈ L∗ is primitive iff mα,K is a primitive
polynomial (of degree [L : K]).

Proof. (1) Define n := deg f . Then |L| = qn and |L∗| = qn − 1. Now use that

ord x̄
3.7.(1)
= ord f = qn − 1.

(2) Define n := [L : K]. If L∗ = 〈α〉 then ord α = |L∗| = qn − 1. Set f = mα,K . Remark
3.7.(2) implies that ord f = ord α = qn−1. Using that deg f ≤ n and that ord f | qdeg f −1
(Corollary 3.8.(1)) we conclude that n = deg f and finally the primitivity of f = mα,K . ¤

Exercise 3.11. Let L := F2[x]/〈f〉 and

(1) f := x3 +x+1. Prove that f is a primitive polynomial, or equivalently, that x̄ ∈ L
is a primitive element, i.e., L∗ = 〈x̄〉.

(2) f := x4 + x3 + x2 + x + 1. First prove that L is a field. Prove that f is an
imprimitive polynomial, or equivalently, that x̄ ∈ L is an imprimitive7 element,
i.e., L∗ 6= 〈x̄〉

3.c. Some field theory. Let K be a field. Recall:

• K[x] is a Gaussian domain8. A more suggestive name is unique factorization
domain (UFD) or simply factorial domain9.

• For f ∈ K[x] the following holds:
– f(a) = 0 ⇐⇒ (x − a) | f .
– f(a) = f ′(a) = 0 ⇐⇒ (x − a)2 | f , where f ′ is the derivative of f w.r.t. x.

• The characteristic of K is defined as char K = min{c ∈ N | c ·1 = 0} or 0. i.e., it
is the unique nonnegative generator of the principal ideal ker(Z → K, c 7→ c · 1) ⊳

Z. char K is either zero or a prime number.
• If char K = p > 0 then Fp ≤ K. Else Q ≤ K. The fields Fp

∼= Z/pZ resp.
Q = Quot(Z) are therefore called prime fields. Each field contains exactly one
prime field as the smallest subfield.

• For a finite field extension K ≤ L define for an element α ∈ L the smallest subring
of L containing K and α

K[α] := {
n∑

i=1

λiα
i | n ∈ N0, λi ∈ K}.

6Unfortunately, this name conflicts the notion of primitive elements of (algebraic) field extensions.
7Although x̄ is a primitive element of the field extension F2 ≤ F2[x̄] = F2[x]/〈x4 + x3 + x2 + x + 1〉.
8German: Gaußscher Bereich
9German: Faktorieller Bereich
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• The vanishing ideal Iα,K = 〈mα,K〉 is the kernel of the ring epimorphism K[x] →
K[α], x 7→ α. Hence K[α] ∼= K[x]/〈mα,K〉 as K-algebras and K(α) := K[α] is
a field with [K(α) : K] = deg mα,K . The field K(α) is called the intermediate
field10 generated by α. Begin

Lect. 11Example 3.12. Let L := F2[x]/〈x4 + x3 + x2 + x + 1〉 as in Exercise 3.11.(2). The
element α := x̄3 + x̄2 +1 satisfies α2 = x̄3 + x̄2. Hence mF2,α = x2 +x+1 and F2(α) = F2[α]
is an intermediate field of degree [F2(α) : F2] = 2: K(α) = K + Kα = {0, 1, α, 1 + α}.

Proposition 3.13. Let K ≤ L a field extension and f ∈ K[x] a monic irreducible with
f(α) = f(α′) = 0 for two elements α, α′ ∈ L. Then K(α) ∼= K(α′) as K-algebras (or as
fields over K).

Proof. f(α) = 0 and f monic irreducible implies f = mα,K by Remark 3.3.(3). The
same ist true for α′. Hence K(α) ∼= K[x]/〈f〉 ∼= K(α′). ¤

Now we recall the notion of the splitting field of a polynomial f ∈ K[x].

Definition 3.14. Let K ≤ L and f ∈ K[x]. We say

• f splits over11 L if f splits as a product of linear factors (when viewed as a
polynomial) over L[x].

• L is a splitting field12 of f over K if f splits over L and L is minimal with this
property.

Remark 3.15. If f splits over L with roots α1, . . . , αn then K(α1, . . . , αn) = K[α1, . . . , αn]
is a splitting field of f contained in L.

Theorem 3.16. For each f ∈ K[x] there exists a splitting field, unique up to K-isomor-
phism.

Proof. The above remark shows that it is enough to construct a field M ≥ K over
which f splits. We may assume13 that f is irreducible (otherwise we do the following for
all factors). The field L := K[x]/〈f〉 contains (at least) one root of f which is α := x̄.
Hence f = (x − α)f̄ ∈ L[x]. Proceed by induction on deg f . ¤

We thus talk about the splitting field of f over K.

3.d. Finite fields. Recall, char K = p > 0 means that pα = 0 for any α in any field
extension L ≥ K.

Lemma 3.17. Let K be a field with char K = p > 0. For each i ∈ N0 the map
ϕi : K → K,x 7→ xpi

is an automorphism of K which fixes the prime field Fp. It is called
the i-th Frobenius automorphism of K.

10German: Zwischenkörper
11German: zerfällt über
12German: Zerfällungskörper
13It is not clear how to make this step constructive. From the constructive point of view, we have just

assumed that we have an algorithm to factor polynomials in irreducibles.
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Proof. Since ϕi = ϕi
1 it suffices to consider i = 1. Of course 1p = 1 and (αβ)p = αpβp

in any field of any characteristic. We therefore only need to prove the “characteristic p
formula”

(α ± β)p = αp ± βp.

Indeed the binomial theorem (α + β)p =
∑p

k=0

(
p
k

)
αkβp−k implies the statement since(

p
0

)
=

(
p
p

)
= 1 and p |

(
p
k

)
for 0 < k < p. Proving the bijectiveness is an exercise. ¤

Theorem 3.18. Let K be a field of prime characteristic p, n ∈ N, and q := pn.
Consider f := xq − x ∈ Fp[x].

(1) f splits over K if and only if K contains exactly one subfield with q elements.
(2) K is the splitting field of f if and only if |K| = q.

Proof. Set
N := {α ∈ K | f(α) = 0}.

Hence |N | ≤ q. Since f has no multiple roots (f ′ = −1 =⇒ gcd(f, f ′) = 1) we conclude
that f splits of K ⇐⇒ |N | = q. The previous lemma implies that N is an intermediate
field of K: α, β ∈ N =⇒ (α − β)q = αq − βq = α − β and we are done with the forward
implication in (1).
Now let M ≤ K be a subfield with q elements. Since |M∗| = q − 1 it follows that every
α ∈ M∗ is a root of f = x(xq−1 − 1), hence M ≤ N . From |N | ≤ q we conclude that
M = N . This proves the uniqueness of M = N and that f splits over a field K containing
N .
(2) follows from (1) and the minimality of the splitting field. ¤

Corollary 3.19.

(1) If K is a finite field then char K = p > 0 and |K| = pn.
(2) For each prime power q = pn there exists up to Fp-isomorphism exactly one field

with q elements.

Proof.

(1) Since K is finite its characteristic char K = p > 0 is prime. Hence, Fp is the
prime field of K and, in particular, K is an Fp-vector space. So |K| = pn, where
n = [K : Fp] := dimFp

K.
(2) follows from Theorem 3.18.(2) and the uniqueness of the splitting field applied to

the polynomial f = xq − x.

¤

We have been referring to this field as Fq. Now we can say “the field Fq”.

Corollary 3.20. The finite field Fq = Fpn contains the unique subfield (isomorphic
to) Fpd if and only if d | n. I.e.

Fpd ≤ Fpn ⇐⇒ d | n.
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In other word, the subfield lattice14 of Fpn is isomorphic to the lattice of divisors of
n (regardless of the prime number p).

Proof. Let K ≤ Fq = Fn
p . Then K has characteristic p and the prime field Fp of

Fq is the prime field of K. Hence K = Fpd for some 1 ≤ d ≤ n. The degree formula
n = [Fpn : Fp] = [Fpn : Fpd ] [Fpd : Fp]︸ ︷︷ ︸

d

implies that d | n.

Now we proof the converse. Let d | n. First note that αpd

= α implies αpn

= α. In

particular, the roots of xpd − x are all roots of xpn − x. So xpd − x splits over Fpn .
Theorem 3.18.(1) then states that Fpn contains the unique field with pd elements. ¤

Example 3.21.

• F4 6≤ F8, but F4 < F16.
• The subfield lattice of Fp12 is isomorphic to the divisor lattice of 12
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3.e. Irreducible polynomials over finite fields. We know that we can construct
the finite field Fpn as the splitting field of xpn − x. This would eventually involve iterated
Kronecker constructions. So it is natural to ask if we can get the job done with just
one Kronecker construction. This question is equivalent to asking if there exists an
irreducible polynomial of degree n over Fp.

Exercise 3.22. Let K be a field and f ∈ K[x] with f(0) 6= 0. Then ord f | k ⇐⇒
f | xk − 1.

Corollary 3.23. Let K = Fq with q = pn.

(1) Each irreducible polynomial f ∈ Fq[x] with deg f = n is square free1516 and splits
over Fqn.

(2) Fq[x]/〈f〉 ∼= Fqn for all irreducible f ∈ Fq[x] with deg f = n.

Proof.

14German: Zwischenkörperverband
15German: quadratfrei
16i.e., it has no multiple roots over its splitting field.
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(1) Corollary 3.8.(1) states that ord f | qn − 1 which is equivalent to f | xqn − x =
x(xqn−1−1) by the above exercise. But the polynomial xqn −x splits with distinct
roots over Fqn by Theorem 3.18 and its proof (applied to qn). The same holds for
the divisor f .

(2) The statement follows from |Fq[x]/〈f〉| = qn and Theorem 3.18.(2).

¤
Begin
Lect. 12

Definition 3.24. Set

A(d) = A(d, q) := |{f ∈ Fq[x] : f irreducible monic with deg f = d}|.
Theorem 3.25. For K = Fq the numbers A(d) satisfy

(*)
∑

d|n
dA(d) = qn.

In particular, A(1) = q and A(d) = qd−q
d

if d is prime.

Proof. Set L := Fqn . We know that Fqd ≤ L ⇐⇒ d | n. First note that a polynomial
f ∈ Fq[x] with deg f | n is the minimal polynomial of d elements in L. This follows from
Corollary 3.23.(1). f is then the minimal polynomial of all its d roots and of no other
element in L. Now recall that deg mα,Fq

| n for all α ∈ L by the degree formula. This
finishes the proof. ¤

Example 3.26. Now we list all minimal polynomials ( = irreducible monic polynomials)
together with their degrees for the following fields:

• K = F4

mα,F2 x x + 1 x2 + x + 1
deg 1 1 2

∑
= 4

• K = F16

mα,F2
x x + 1 x2 + x + 1 x4 + x + 1 x4 + x3 + 1 x4 + x3 + x2 + x + 1

deg 1 1 2 4 4 4
∑

= 16

Remark 3.27. We list the following facts without proof:

(1) Asymptotically: A(d) ∼ qd

d
.

(2) Since formula (*) is an inclusion-exclusion counting formula over a lattice one can
use the Möbius function

µ(d) :=





1 , d = 1
0 , d is not square free

(−1)k , d is the product of k distinct primes

to “invert” it:

A(n) =
1

n

∑

d|n
µ(d)q

n
d .

Example 3.28. A(20, q) = 1
20

(q20 − q10 − q4 + q2).
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3.f. Primitive polynomials. Counting primitive polynomials is much simpler.

Proposition 3.29. Let K be a field and U a finite subgroup of K∗. Then U is cyclic.

Proof. Exercise. ¤

Corollary 3.30. Let ϕ denote Euler’s totient function17

(1) There are exactly ϕ(q − 1) primitive elements in Fq.

(2) There are exactly ϕ(qd−1)
d

primitive monic polynomials of degree d in Fq[x].

Proof.

(1) Proposition 3.29 implies that the multiplicative group F∗
q is cyclic, in particular

F∗
q = {a0, a1, . . . , aq−2}. ai is primitive ⇐⇒ gcd(i, q − 1) = 1.

(2) Every primitive f ∈ Fq[x] of degree d is the minimal polynomial of exactly d
primitive elements in L = Fqd . This follows from the irreducibility of f (Corol-
lary 3.8.(2)) and Remark 3.10 using (1) and the same argument as in the proof of
Theorem 3.25.

¤

Example 3.31. In the exercises we will see how to use the Frobenius automorphisms
to construct irreducible and primitive polynomials over finite fields. In the following two
examples we mainly sum up computations we did before:

(1) F4 = F22 = {0, 1, ω, 1 + ω} with ω2 + ω + 1 = 0. ω and 1 + ω are all primitive
elements of F4 and their minimal polynomial x2 + x + 1 the only irreducible and
primitive polynomial of degree 2 over F2.

(2) There are ϕ(16 − 1) = 8 primitive elements in F16 = F24 = F42 . Hence there are
8
2

= 4 primitive polynomials

x2 + x + ω, x2 + x + ω2, x2 + ωx + ω, x2 + ω2x + ω2

of degree 2 over F4 and 8
4

= 2 primitive polynomials

x4 + x + 1, x4 + x3 + 1

of degree 4 over F2. The polynomial x4 + x3 + x2 + x + 1 = x5−1
x−1

is the only
irreducible imprimitive polynomial of degree 4 over F2.

Example 3.32. We compare A(d) and the number of primitive polynomials of degree
d over F2:

d 1 2 3 4 5 6 7 8 9 10 11 16
A(d, 2) 2 1 2 3 6 9 18 30 56 99 186 4080

primitive 2 1 2 2 6 6 18 16 48 60 176 2048

17German: Eulersche ϕ-Funktion
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We will be using primitive polynomials χ over finite fields to construct pseudo-random
sequences s = 〈c, t〉 of maximal possible period lengths (cf. Definition 2.4). Since χ =
χc will be part of the secret key, we need to know how to randomly choose primitive
polynomials. The idea will be to randomly choose a polynomial and then to test its
primitiveness.

4. Statistical tests

Let Xn and Un denote random variables with values in {0, 1}n where Un is the uniformly
distributed one. Note that any map f : {0, 1}n → {0, 1}m induces a random variable
Ym := f ◦ Xn.

Example 4.1. Define linear pseudo-random bit generator G as the map

G :

{
{0, 1}2ℓ → {0, 1}•
(c, t) 7→ 〈c, t〉 ,

where we consider the pair (c, t) as an ℓ-bit LFSR given by c ∈ Fℓ×1
2 and initial value

t ∈ F1×ℓ
2 . By truncation to first n bits we get a map

Gn :

{
{0, 1}2ℓ → {0, 1}n

(c, t) 7→ 〈c, t〉i=0,...,n−1

Define the random variable

X := G ◦ U2ℓ

In words, X is a (linear) pseudo-random bit generator with random seed. Define the
finite random variable

Xn := Gn ◦ U2ℓ

with values in {0, 1}n.

Our goal will be to compare Xn with Un.

Definition 4.2. A (polynomial) statistical test is a polynomial probabilistic algo-
rithm

A :

{
{0, 1}• → {0, 1}

s 7→ A(s)
.

We say the s ∈ {0, 1}n passes the test A only if A(s) = 1.

Remark 4.3. The composition A◦Xn is a random variable with values in {0, 1} for any
random variable Xn (with values in {0, 1}n). µA◦Xn

(1) is the probability that an s ∈ {0, 1}n

that was chosen according to Xn passes the test A.

The idea is to construct statistical tests A where s ∈ {0, 1}n only passes A if it was
chosen randomly, i.e., according to Un.
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4.a. Statistical randomness. The idea is to choose a statistic

S : {0, 1}• → R

such that the distribution of S◦Un converges to a continuous probability density f . Recall,
a continuous18 real valued random variable X : Ω → R has a probability density
f : R → R≥0 satisfying the probability PX(I) = P (X ∈ I) =

∫
I
f(x)dx for any interval

I ⊂ R .

Example 4.4. For α ∈ (0, 1) choose an interval I ⊂ R (as small as possible) with∫
I
f(x)dx > 1 − α, or, equivalently,

∫
R\I f(x)dx < α. Define the statistical test A := AS,α

induced by the statistic S by setting

AS,α(s) :=

{
1 if S(s) ∈ I
0 if S(s) 6∈ I

.

Then µA◦Un
(1) > 1 − α and, equivalently, µA◦Un

(0) < α. The real number α is called the
significance level19.

Recall that the expected value of the real valued random variable X with density f can
be computed as E(X) :=

∫
x∈R

xf(x)dx. The variance20 is defined by

Var(X) := E((X − E(X))2) = E(X2) − E(X)2.
Begin
Lect. 13Remark 4.5. Let X,Y be two (finite) random variables and a, b, c ∈ R.

(1) E is linear, i.e.
E(aX + bY ) = aE(X) + bE(Y ).

(2) If X and Y are independent then

Var(aX + bY + c) = a2 Var(X) + b2 Var(Y ).

(3) If Y is discrete and uniformly distributed and (Y1, . . . , Yn) the n-fold independent

repetition of the experiment Y . Then Zn :=
∑n

i=1

(
Yi−E(Y )√

n Var(Y )

)
=

Pn
i=1 Yi−nE(Y )√

n Var(Y )

converges to the standard normal distribution21 N(0, 1) with expected value
0 and variance 1 (see Appendix 1.b).

Proof. E(Zn) = 0 and Var(Zn) = n Var(Y )
n Var(Y )

= 1. ¤

Example 4.6. We now give two examples of polynomial statistical tests.

(1) Monobit (or balance) test: Since E(U1) = 1
2

and Var(U1) = 1
4

we define the
statistic S : {0, 1}• → R

S(s0s1 . . . sn−1) :=

∑
i si − n

2√
n
4

=
2
∑

i si − n√
n

.

18German: stetig (hat zwei Bedeutungen!)
19German: Signifikanzniveau
20German: Varianz
21German: Standard-Normalverteilung
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according to Remark 4.5.(3). Hence S ◦ Un is an approximation of N(0, 1) for n
large. For a given significance level α ∈ (0, 1) choose I = (−x, x) with erfc( x√

2
) <

α, i.e., x <
√

2erfc−1(α). Define

A :





{0, 1}n → {0, 1}
s 7→

{
1 if |S(s)| < x
0 otherwise

=

{
1 if |∑i si − n

2
| < d

0 otherwise
,

where d :=
√

n
2

erfc−1(α). Then µA◦Un
(1) > 1−α and, equivalently, µA◦Un

(0) < α.
For example, a bit sequence of length n = 20000 passes the monobit test with
significance level α = 10−6 if the number of ones lies in the interval (n

2
−d, n

2
+d) ≈

(9654, 10346).
(2) Autocorrelation test: The autocorrelation test on the bit sequence s = (si) ∈

FN0
2 with distance d is the monobit test on the bit sequence s′ = (si +si+d) ∈ FN0

2 .
(3) There are much more such tests. See, for example, the so-called runs test

[Wik10i].

Remark 4.7. LFSRs have good statistical properties; in particular, their output passes
all statistical tests in the above example. Indeed, if A is the monobit test then µA◦Xn

(1) ≈ 1
for Xn = Gn ◦ U2ℓ (cf. Example 4.1).

Sketch of Proof. Each period of a primitive ℓ-bit LFSR (with maximal possible
period length 2ℓ − 1) consists of exactly 2ℓ−1 − 1 zeros and 2ℓ−1 ones. ¤

4.b. Unpredictability. Passing all statistical randomness tests is not enough for a
pseudo-random bit generators to be cryptographically secure. It must be “unpredictable”
as well.

Remark 4.8 (Predictability of an LFSR). Let s = 〈c, t〉 be the output of an ℓ-bit
LFSR of which 2ℓ consecutive bits are known, say s0, . . . , s2ℓ−1, w.l.o.g.22. Hence the ℓ
consecutive vectors t(0), . . . , t(ℓ−1) ∈ F1×ℓ

2 are known. They satisfy the equation



t(0)

...
t(ℓ−1)


 · c =




sℓ
...

s2ℓ−1


 .

This inhomogeneous linear system is solvable by our assumption on s. And there exists a
unique solution for c if and only if t(0), . . . , t(ℓ−1) are F2-linearly independent. In this case
the next-bit s2ℓ = (sℓ · · · s2ℓ−1) · c can be predicted. This last condition is satisfied when
the LFSR is irreducible and t(0) 6= 0.

Example 4.9. For ℓ = 4 and s = 10101111?? . . . we solve


1 0 1 0
0 1 0 1
1 0 1 1
0 1 1 1


 · c =




1
1
1
1




22German: oBdA
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and obtain the unique solution c =




1
1
0
0


. The complete sequence is 101011110001001|1010

(cf. Example 2.11).

Definition 4.10. Let P be a statistical test. The next-bit test with predictability
P is the statistical test A := AP defined by

s = s0 . . . sn 7→ AP (s) =

{
0 if P (s0 . . . sn−1) = sn

1 if P (s0 . . . sn−1) 6= sn
.

In words, 0 for correct prediction and 1 for incorrect prediction. Note that if P is polynomial
then so is AP .

Note that µAP ◦Un
(1) = µAP ◦Un

(0) = 1
2
, regardless of P .

Example 4.11 (Linear predictability of an LFSR). Define the statistical test P by
setting

P (s) := (sℓ · · · s2ℓ−1) · c
where s = s0, . . . , s2ℓ−1 ∈ {0, 1}2ℓ and c computed as in Remark 4.8 (a not necessarily
unique solution). Remark 4.8 implies23 that µAP ◦X2ℓ+1

(1) = 0 for X2ℓ+1 = G2ℓ+1 ◦ U2ℓ

(cf. Example 4.1). An LFSR is (linearly predictable) and in its original form cryptograph-
ically insecure.

5. Cryptographically secure pseudo-random bit generators

Again, let Xn and Un be random variables with values in {0, 1}n where Un is the
uniformly distributed one.

Definition 5.1.

(1) A polynomial deterministic algorithm G : {0, 1}• → {0, 1}• is called a pseudo-
random bit generator (PRBG) if there is a function n : N → N with n(k) > k
and G({0, 1}k) ⊂ {0, 1}n(k) for all k ∈ N. The function n is called the stretch
function of G.

(2) A function f : N → R is called negligible24 if for each positive polynomial p there
exists a k0 ∈ N such that |f(k)| < 1

p(k)
for all k ≥ k0. The function f(k) = e−k is

a prominent example of a negligible function.
(3) We say that G passes the statistical test A if

k 7→ µA◦G◦Uk
(1) − µA◦Un(k)

(1)

is negligible.

23We skipped some details here. For example, since P is defined only for |s| even, AP is a priori only
defined for |s| odd. To define it for |s| = 2r we set AP (s) := AP (s0 . . . s2r−2). The non-uniqueness of c
has to be addressed as well (cf. [Wik10c].)

24German: vernachlässigbar
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(4) G is called cryptographically secure (CSPRBG) if G passes all polynomial
tests.

In words, G is cryptographically secure if an adversary with limited computational
resources has no non-negligible advantage in predicting the next bit of the pseudo random
sequence.

Example 5.2. Let n : N → N be an arbitrary function with n(k) > k for all k ∈ N.
Define G by

G(a0a1 . . . ak−1) := 〈a0 . . . aℓ−1, aℓ . . . a2ℓ−1〉i=0,...,n(k)−1, ℓ := ⌊k

2
⌋,

the PRBG corresponding to LFSRs. For P as in Example 4.11 we obtain µAP ◦G◦Uk
(1) −

µAP ◦Un(k)
(1) ≡ −1

2
, not negligible. Hence, LFSRs are not cryptographically secure (even

for n : k 7→ k + 1).

We state without proof:

Theorem 5.3 (Yao). A PRBG is cryptographically secure iff it is unpredictable, i.e.,
iff it passes all polynomial next-bit tests.

Begin
Lect. 14 5.a. Empirical security. The problem with the LFSRs is basically their linearity.

Here are some attempts to destroy this linearity.
(1) The first idea is to use the complete state vector t(n) = t(n−1)C instead of simply

returning its last entry sn+ℓ. For this use a non-linear “filter function” f : F1×ℓ
2 → F2,

which will be regarded as part of the secret key:

Example 5.4 (Knapsack25 generator). Given a primitive ℓ-bit LFSR (i.e., with period
2ℓ−1), fix a natural number k > lg ℓ and choose in some random way non-negative integers
a0, . . . , aℓ−1. They build together with the initial vector the secret key. Define the filter
function f(u) := (k-th last bit of

∑
ui=1 ai) where u = (u0 . . . uℓ−1) ∈ F1×ℓ

2 .

(2) The second idea is combine several LFSRs clocked26 in different ways:

Example 5.5 (Alternating step generator). Let R be an LFSR generating a sequence
r = (rn) and S and S ′ two different LFSRs. Use R to reclock S and S ′ by resetting

sℓ+i := t(i) · c and s′ℓ+i := s′ℓ+i−1, if ri = 0,
s′ℓ+i := t′(i) · c′ and sℓ+i := sℓ+i−1, if ri = 1.

Define the resulting sequence to be (si + s′i) (in the notation of Definition 2.1). For a
C-implementation see [Wik10b].

(3) The third idea is that an LFSR throws away parts of another LFSR:

Example 5.6 (Shrinking generator). Two LFSRs are running in parallel and produce
the bit sequences s and s′. If s′i = 1 the bit si is returned, otherwise it is discarded27.

25German: Rucksack
26German: getaktet
27German: verworfen
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5.b. Provable security. Let f : {0, 1}• → {0, 1}• be a polynomial deterministic
algorithm. The question of whether there exists a polynomial algorithm that computes
preimages28 of f leads us to the next fundamental definition:

Definition 5.7. Let f : {0, 1}• → {0, 1}• be a polynomial deterministic algorithm.
For an arbitrary polynomial probabilistic algorithm A : {0, 1}• → {0, 1}• define

Af : {0, 1}• → {0, 1}, x 7→
{

1 if f(A(f(x))) = f(x)
0 otherwise

.

(1) f is called a one-way function (OWF)29 if k 7→ µAf◦Uk
(1) is negligible for all

A.

Let b : {0, 1}• → {0, 1} be a polynomial deterministic algorithm. For an arbitrary poly-
nomial statistical test (i.e., a polynomial probabilistic algorithm) A : {0, 1}• → {0, 1}
define

Af,b : {0, 1}• → {0, 1}, x 7→
{

1 if A(f(x)) = b(x)
0 otherwise

.

(2) b is called a hardcore predicate30 (or hardcore bit, or hidden bit) of f if
k 7→ µAf,b◦Uk

(1) − 1
2

is negligible for all A.

Remark 5.8.

(1) If f is injective (in words, does not lose information) and has a hardcore predicate
then f is a OWF.

(2) The existence of a hardcore predicate does not imply the injectivity of f . For
example, the non-injective function f defined by f(s0s1 . . . sn) = s1 . . . sn has the
hardcore predicate b(s0s1 . . . sn) = s0.

Definition 5.9. A one-way permutation (OWP) is a bijective one way function
which is length preserving, i.e., f({0, 1}n) ⊂ {0, 1}n and f : {0, 1}n → {0, 1}n is a permu-
tation for all n ∈ N0.

Theorem 5.10. Let f be a OWP with hardcore predicate b and n : N → N an arbitrary
function with n(k) > k which is bounded by some polynomial and which is computable by
a polynomial run-time algorithm. Then the function G : {0, 1}• → {0, 1}• defined by

G(s) := b(s)b(f(s)) . . . b(fn(k)−1(s))

is a CSPRBG with stretch function n.

Proof. Consider
G′(s) := b(fn(k)−1(s)) . . . b(f(s))b(s).

Assume G′ is not cryptographically secure. Then Yao’s Theorem would imply the existence
of a next-bit test AP which G′ does not pass. But this contradicts b being a hardcore bit

28German: Urbilder
29German: Einwegfunktion
30German: Hardcore-Prädikat, oder Sicherheitsbit
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of f . The proof is complete since cryptographic security does not depend on the order of
the output. ¤

Lemma 5.11. Let f be a OWP. Then

g : {0, 1}2n → {0, 1}2n, (x, y) 7→ (f(x), y)

with |x| = |y| defines a OWP with the Goldreich-Levin hardcore predicate b given
by b(x, y) :=

∑n
i=1 xiyi ∈ F2.

Proof. This is a corollary of the Goldreich-Levin Theorem, see [Tre05]. ¤

Corollary 5.12. The existence of a CSPRBG is equivalent to the existence of a OWP.

Proof. The backward implication follows from Theorem 5.10 and Lemma 5.11. The
forward implication is an exercise. ¤

5.c. A CSPRBG based cryptosystem. We finish this chapter by constructing a
cryptosystem based on a (public) CSPRBG G with stretch function n.

Example 5.13. Define the symmetric cryptosystem (P,C,K,E,D) with P = C =
{0, 1}•, K = {0, 1}k for some security parameter k := ⌈lg |K|⌉ ∈ N (e.g., k = 128), and
E as follows:
For each p ∈ P choose randomly a key e ∈ K and a seed s ∈ K and compute G(s) ∈
{0, 1}n(k). Set

c = Ee(p) := (s + e) · (p + G(s))0,...,|p|−1,

where + is the bitwise addition and · the concatenation of bits. So |c| is slightly bigger
than |p|. If |p| > n(k) then choose a new random seed. This cryptosystem has at least two
advantages:

• After the receiver gets s + e he can compute s and can start to computing G(s).
• The receiver can decrypt c bitwise!



CHAPTER 4

AES and Block Ciphers

1. Block ciphers

Definition 1.1. A block cipher1 is a quadruple (A, ℓ,K,E) with finite sets A and
K, an ℓ ∈ N, B := Aℓ, and E : B × K → B, (p, e) 7→ Ee(p), where Ee is a permutation for
all e ∈ K. A is the alphabet, K the key space, and B the blocks.

In Example 1.5 we will see several ways to construct a symmetric cryptosystem out of
a block cipher.

Example 1.2. Let A = F = F2n = F2/〈f〉 be the finite field with 2n elements. We list
four different actions on B := F ℓ.

(1) SubByte or S-box: The inversion in the field F defines a permutation −1 : a 7→ a−1

for a ∈ F ∗ and 0−1 := 0. This permutation is non-linear but fixes 0,±1. Choose
an F2-linear invertible map g : F → F and an element t ∈ F such that σ : F →
F, a 7→ ga−1 + t is a fixed-point-free permutation (or derangement). Extend σ
to a permutation p = (a1, . . . , aℓ) 7→ (σ(a1), . . . , σ(aℓ)) on B.

(2) ShiftRows: A permutation π ∈ Sℓ induces a block permutation on B defined by
p 7→ (aπ(1), . . . , aπ(ℓ)).

(3) MixColumns: Choose an element h ∈ F [x] of degree m | ℓ and an invertible
element c in the residue class ring2 R := F [x]/〈h〉. Then c ∈ R∗ induces a
permutation c : Fm → Fm, p 7→ c · p, where p = (a1, . . . , am) is identified with the
polynomial a1x

m−1 + · · ·+am−1x+am. Extend this permutation to a permutation

on B = F ℓ = (Fm)
ℓ
m by p = (p1, . . . , p ℓ

m
) 7→ (c · p1, . . . , c · p ℓ

m
).

(4) AddRoundKey: In case K = B then the addition of a key e induces a permutation
p 7→ p + e on B = F ℓ.

Note that (1) and (2) commute but (1) and (3) don’t.

1.a. AES, the Advanced Encryption Standard.

Example 1.3 (AES). The United States Government’s NIST3 announced on the 26th
of November 2001, after a 5-year standardization process, the symmetric cryptosystem
published under the name Rijndael as the Advanced Encryption Standard (AES).
This block cipher was developed by the two Belgian cryptographers Joan Daemen and

1German: Blockchiffre
2Note that we do not require R to be a field.
3National Institute of Standards and Technology
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Vincent Rijmen. The AES cryptosystem is now widely used. In the above example
choose

• n = 8: The 256 elements in the field F = F28 = F256 are considered as bytes (=8
bits) and represented by two hexadecimal digits 00, 01, . . . , 0F, 10, . . . , FF. As cus-
tomary we write 0x in front of hexadecimal numbers. So 0x63 is the hexadecimal
representation of the decimal number 99. Its binary representation is 01100011.

• ℓ := 16: B = F 16 ∼=F2 F128
2 which has more elements than atoms in the universe.

• f := fAES := x8+x4+x3+x+1: 0x63 corresponds the field element x̄6+x̄5+x̄+1 ∈
F .

• t := 0x63 ∈ F corresponding to the vector

t :=




1
1
0
0
0
1
1
0




and choose g :=




1 · · · 1 1 1 1
1 1 · · · 1 1 1
1 1 1 · · · 1 1
1 1 1 1 · · · 1
1 1 1 1 1 · · ·
· 1 1 1 1 1 · ·
· · 1 1 1 1 1 ·
· · · 1 1 1 1 1




∈ GL8(F2)

For the lookup table of the permutation F → F, a 7→ ga−1 + t see Figure 1.

| 0 1 2 3 4 5 6 7 8 9 a b c d e f

---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|

00 |63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

10 |ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

20 |b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

30 |04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

40 |09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

50 |53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

60 |d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

70 |51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

80 |cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

90 |60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a0 |e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b0 |e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c0 |ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d0 |70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e0 |e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f0 |8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Figure 1. Lookup table for the Rijndael S-box
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• π to be the permutation inducing the following row-shifts

p :=




a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

a4 a8 a12 a16


 7→




a1 a5 a9 a13

a6 a10 a14 a2

a11 a15 a3 a7

a16 a4 a8 a12


 ∈ B = F 16 ≡ F 4×4.

• m = 4, h := x4 + 1 = (x + 1)4 ∈ F [x], and c = 0x03 · x3 + x2 + x + 0x02 ∈ R∗.
This corresponds to the matrix4 multiplication

p :=




a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

a4 a8 a12 a16


 7→




02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02




︸ ︷︷ ︸
∈F 4×4

· p ∈ F 4×4 ≡ F 16 =: B

• K ∈



B = F 16

︸ ︷︷ ︸
128-bit keys

, F 24

︸︷︷︸
192-bit keys

, F 32

︸︷︷︸
256-bit keys



.

The ciphering algorithm Ee is composed out of N+1 rounds, where N = 10, 12, 14 depend-
ing on K = F 16, F 24, F 32. The Rijndael key schedule K → (F 16)N+1, e 7→ (k0, . . . , kN)
produces the N + 1 round keys5 [Wik10h]. For details see [Wik10a] and the homepage
of the course [Bar10].

Begin
Lect. 15

Remark 1.4. The iteration of the two steps ShiftRows and MixColumns produce what
Shannon called the diffusion:
Changing a bit in p would change each bit in c = Ee(p) with probability 1

2
.

1.b. Block cipher modes of operation.

Example 1.5. Let (A, ℓ,K,E) be a block cipher, and B := Aℓ. We now list several
ways to construct a symmetric cryptosystem (P,C,K,E,D) with P = C = B•. So for a
(secret) key e ∈ K define Ee(p1p2 . . .) = c1c2 . . . by setting

(1) ci := Ee(pi) (ECB mode = electronic codebook mode).

Assuming that (A, +) is a group and B the ℓ-fold direct product group and that c−1 ∈ B
is an arbitrary (public) initial value:

(2) ci := Ee(pi + ci−1) for i ≥ 0 (CBC mode = cipher-block chaining).
(3) ci := pi + Ee(ci−1) for i ≥ 0 (CFB mode = cipher feedback).
(4) ci := pi + si, si := Ee(si−1) for i ≥ 0 (OFB mode = output feedback).

For diagrams see [Wik10d].

4The entries are hexadecimal numbers where we dropped the 0x-prefix.
5German: Rundenschlüssel
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Example 1.6. Let (A, ℓ,K,E) be a block cipher with A = Fn
2 and B := Aℓ = Fk

2,
where k = nℓ. The encryption algorithm Ee : B → B can be used to construct a PRBG
G : {0, 1}k → {0, 1}• with fixes seed length k according to

G(s) = Ee(s)E
2
e(s) . . .

Compare this with the reversed situation in Example 5.13.



CHAPTER 5

Candidates of One-Way Functions

1. Complexity classes

Definition 1.1. A problem Π lies in the complexity class

• P if Π is deterministically solvable in polynomial time.
• BPP if Π is probabilistically solvable in polynomial time.
• BQP if Π is solvable by a quantum computer in polynomial time.
• NP if a solution of Π can deterministically verified in polynomial time.
• NPC if any other problem in NP can be reduced to Π in polynomial time.
• EXP if Π deterministically solvable in exponential time.

BPP stands for "bounded-error probabilistic polynomial runtime" and BQP for
"bounded-error quantum polynomial runtime".

Remark 1.2. It is known that

• P ⊂ BPP ⊂ NP ⊂ EXP.
• P ( EXP (e.g., evaluation of a chess move).
• the traveling salesman problem lies in NPC.
• the factorization of natural numbers (FACTORING problem) and the dis-

crete logarithm problem (DLP) (see below) lie in NP ∩ BQP.

It is conjectured1 that

• P = BPP.
• BPP 6= NP, in particular NPC ∩ BPP = ∅.
• FACTORING and DL do not lie in BPP.
• BQP 6= NP, in particular NPC ∩ BQP = ∅.

It would be optimal for cryptography if there is a Π ∈ NP \ BQP .

Definition 1.3. Let G = 〈g〉 be a finite cyclic group. For each y ∈ G, there is exactly
one minimal a ∈ N0 with ga = y. We call a the discrete logarithm of y with basis
g. Computing a =“logg y” (given a and y) is called the discrete logarithm problem
(DLP)

Remark 1.4. In modern cryptography (2010) we make the following two standard
assumptions:

(1) DL assumption: DLP 6∈ BPP, i.e., the computation of discrete logarithm in
the group Cp−1

∼= F∗
p is not in BPP.

1December 2010
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(2) FACTORING assumption: The factorization of natural numbers does not lie
in BPP.

We can prove the existence of cryptographically useful one-way functions only under such
assumptions.

Example 1.5. For each prime p choose a fixed primitive element a ∈ Z/pZ. Assuming
DL, the function

f : {1, . . . , p − 1} → {1, . . . , p − 1}, x 7→ ax mod p.

is a OWF with hardcore predicate

b(x) =

{
1 if x < p

2
0 if x ≥ p

2

.

2. Squaring modulo n

Consider the squaring homomorphism

qn : (Z/nZ)∗ → (Z/nZ)∗, x 7→ x2.

Remark 2.1. If n = p is a prime then

• ker(qn) = {±1}.
• If p > 2 then there are exactly p−1

2
squares in (Z/pZ)∗.

If n = pq, a product of two distinct odd primes p, q. Then

• ker(qn) consists of four elements.

• There exists exactly ϕ(n)
4

squares in (Z/nZ)∗.

Example 2.2. Consider the following values of n:

• n = 3:

a 1 2
a2 1 1

• n = 5:

a 1 2 3 4
a2 1 4 4 1

• n = 15:

a 1 2 4 7 8 11 13 14
a2 1 4 1 4 4 1 4 1

Now we want to study classical methods to identify squares and compute square roots.
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2.a. Quadratic residues.

Definition 2.3. For a ∈ Z and p prime define the Legendre symbol

(
a

p

)
:=





1 if a ≡ b2 mod p,
0 if p | a,

−1 otherwise
.

Theorem 2.4 (Euler). Let p > 2 be an odd prime. Then
(

a
p

)
≡ a

p−1
2 mod p

Proof. The case p | a is clear. So assume p ∤ a. The group F∗
p = (Z/pZ)∗ is cyclic

of order p − 1 so ap−1 ≡ 1 mod p. Hence a
p−1
2 is a root of x2 − 1 ∈ Fp[x] and the group

homomorphism

h : (Z/pZ)∗ → {±1} ≤ (Z/pZ)∗, a 7→ a
p−1
2

is surjective. The kernel of h thus consists of p−1
2

elements and contains ((Z/pZ)∗)2, so it
coincides with ((Z/pZ)∗)2. ¤

Euler’s theorem can be used to simplify the computation of the Legendre symbol.
For example

Corollary 2.5. (−1

p

)
= (−1)

p−1
2 =

{
1 if p ≡ 1 mod 4

−1 if p ≡ 3 mod 4

Exercise 2.6. The map
( ·

p

)
: (Z/pZ)∗ → {±1}

is a group homomorphism.

Definition 2.7. The elements in the kernel of
(

·
p

)
are called quadratic residues

modulo p.

Definition 2.8 (Jacobi symbol). Let n = pa1
1 · · · par

r > 1 be the decomposition of the
natural number n as powers of distinct primes. For a ∈ Z set

(a

n

)
:=

(
a

p1

)a1

· · ·
(

a

pr

)ar

∈ {−1, 0, 1},

and for n = 1 set
(

a
1

)
:= 1.

The Jacobi symbol can be computed without knowing an explicit factorization of n
(cf. EZT Vorlesung).

Corollary 2.9.
(

a
n

)
= −1 implies that a is not a square modulo n.

Definition 2.10. If
(

a
n

)
= 1 and a is not a square modulo n, then we call a a pseudo-

square modulo n.
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Example 2.11. Consider the following values of n:

• n = 3:
a 1 2
a2 1 1(
a
n

)
1 −1

• n = 5:
a 1 2 3 4
a2 1 4 4 1(
a
n

)
1 −1 −1 1

• n = 15:
a 1 2 4 7 8 11 13 14
a2 1 4 1 4 4 1 4 1(
a
n

)
1 1 1 −1 1 −1 −1 −1

So 2 and 8 are pseudo-squares modulo 15.

Definition 2.12. Define the set of

• squares modulo n:

Qn := {a ∈ (Z/nZ)∗ | ∃b ∈ Z/nZ : a = b2} = ((Z/nZ)∗)2.

• non-squares modulo n:

Qn := {a ∈ (Z/nZ)∗ |6 ∃b ∈ Z/nZ : a = b2} = (Z/nZ)∗ \ ((Z/nZ)∗)2.

• pseudo-squares modulo n:

Q̃n :=
{

a ∈ (Z/nZ)∗ |
(a

n

)
= 1

}
\ Qn ⊂ Qn.

Begin
Lect. 16 Proposition 2.13. Let p be a prime with p ≡ 3 mod 4. Then a ∈ Qp has exactly one

square root in Qp. We call it the principal root of a.

Proof. Z/pZ ∼= Fp is a field, hence there are exactly two roots ±b. By Corollary 2.5

and Exercise 2.6 we compute
(

−b
p

)
=

(
−1
p

) (
b
p

)
= −

(
b
p

)
. W.l.o.g.

(
b
p

)
= 1 and

(
−b
p

)
=

−1, so b ∈ Qp and −b ∈ Qp. ¤

Example 2.14.

• Q5 = {1, 4}. The square roots of 4 are 2, 3 ∈ Q5. The square roots of 1 are
1, 4 ∈ Q5.

• Q7 = {1, 2, 4}. The square roots of 2 are 3 ∈ Q7 and 4 ∈ Q7. The square roots of
4 are 2 ∈ Q7 and 5 ∈ Q7.

Definition 2.15. An n ∈ N is called a Blum number if n = p1p2 with pi distinct
primes and pi ≡ 3 mod 4.

Remark 2.16. The following holds for a Blum number n:
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(1) Each a ∈ Qn has exactly one square root in Qn (again called the principal root

of a), one in Q̃n, and two in Qn \ Q̃n.

(2) −1 ∈ Q̃n.

Proof. (1) follows from Proposition 2.13 and the chinese remainder theorem. Details
are left as an exercise. (2) follows from Corollary 2.5. ¤

2.b. Square roots.

Definition 2.17. We list the following three fundamental problems:

FACTORING Given an n ∈ N
compute a prime factor.

SQROOT Given an n ∈ N and a square a ∈ Qn

compute a square root of a modulo n.
QRP Given an n ∈ N and a ∈ Z with

(
a
n

)
= 1

decide whether a is a square or a pseudo-square.

Theorem 2.18. SQROOT for n = p prime lies in BPP.

Proof. Let n = p > 2 a prime number and a ∈ (Z/pZ)∗. The idea is to exploit that

(3) am = 1 for m odd implies that
(
a

m+1
2

)2

= am+1 = a.

Recall that

a ∈ Qp ⇐⇒ a
p−1
2 ≡ 1 mod p,

by Euler’s Theorem 2.4. So let a be a square.
Case 1: p−1

2
is odd, i.e., p ≡ 3 mod 4:

Using (3) with m = p−1
2

yields the square root a
m+1

2 = a
p+1
4 of a.

Case 2: p−1
2

is even, i.e., p ≡ 1 mod 4:

a ∈ Qp ⇐⇒ a
p−1
2 = 1 ⇐⇒ a

p−1
4 = ±1.

We now prove by induction that we can use the equation am = ±1 for m | p−1
4

to compute

a square root of a. We start with m = p−1
4

.

Case a): am = 1 and m even: Proceed with the equation a
m
2 = ±1.

Case b): am = 1 and m odd: (3) yields a square root a
m+1

2 of a.

Case c): am = −1. Choose an arbitrary b ∈ Qp and set b′ := b
p−1
4m . Proceed with the

equation

(ab′2)m = amb
p−1
2 = (−1)2 = 1.

Finally note that if c is a square root of ab′2 then a = (cb′−1)2.
This describes the probabilistic polynomial algorithm of Tonelli–Shanks [Wik11f].
We omit the details. ¤
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Example 2.19. Let p = 41. We know that a = −2 ∈ Q41 since (−2)21 = −(27)3 =
−53 = −2 so (−2)20 = 1. Now we want to use the above algorithm to compute a square
root of a. Note that p−1

2
= 20 is even and p−1

4
= 10. Find an element b ∈ Q41 by randomly

checking (probability of failure is 1
2
):

• 220 = (−1)20 · (−2)20 = 1 (×).
• 320 = (34)5 = (81)5 = (−1)5 = −1 (

√
).

So choose b = 3:

a m am p−1
4m

b′ = b
p−1
4m

m+1
2

b′−1
√

a
−2 10 −1 1 31 = 3 14 33 · 14 = 11

−2 · 32 = 23 10 1
23 5 −1 2 32 = 9 32 10 · 32 = 33

23 · 92 = −23 = 18 5 1 3 183 = 10

Lemma 2.20. Let n = p1p2 be a Blum number (pi ≡ 3 mod 4 will not be relevant).
Any x ∈ ker qn with x 6= ±1 yields a factorization of n.

Proof. Let x ∈ {m ∈ N | 1 < m < n − 1 and m2 ≡ 1 mod n}. Then p1p2 = n |
x2 − 1 = (x− 1)(x + 1). Since n ∤ x± 1 we conclude w.l.o.g. that p1 | x− 1 and p2 | x + 1.
Now p1 can be effectively computed as p1 = gcd(x − 1, n). ¤

Theorem 2.21. If SQROOT for Blum numbers lies in BPP then FACTORING for
Blum numbers lies in BPP.

Proof. From a probabilistic polynomial algorithm A that solves SQROOT for Blum

numbers we construct the following probabilistic polynomial algorithm that solves FAC-
TORING:
Choose an arbitrarily element c ∈ (Z/nZ)∗ and compute a := A(c2). So c

a
is an element in

ker qn which is with probability 1
2

different from ±1. The rest is Lemma 2.20 ¤

2.c. One-way functions. We sharpen our
FACTORING assumption: FACTORING of Blum numbers does not lie in BPP.
We also need the following
QR assumption: QRP for Blum numbers does not lie in BPP.

Theorem 2.22. Let n be a Blum number. Then f := qn|Qn
: Qn → Qn is a permuta-

tion.

(1) f is a one-way permutation under the FACTORING assumption (with security

parameter: k := ⌈lg |Qn|⌉ = ⌈lg ϕ(n)
4
⌉ = ⌈lg ϕ(n)⌉ − 2).

(2) The so-called parity (bit)

par : (Z/nZ)∗ 7→ {0, 1}, a 7→ (smallest nonnegative representative of a) mod 2

defines under the QR assumption a hardcore bit of f .
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Proof. f is a permutation by Remark 2.16.(1). (1) follows from Theorem 2.21. To

prove (2) let
(

a
n

)
= 1, i.e., a ∈ Qn∪̇ Q̃n. For the principal root w ∈ Qn of a2 we claim:

(par) w = a ⇐⇒ par(w) = par(a).

The forward implication of the claim is trivial. We now prove the backward implication:

Since −1 ∈ Q̃n by Remark 2.16.(2) and w ∈ Qn we deduce that −w ∈ Q̃n (i.e., that Q̃n =
−Qn). So a = w or a = −w. In other words: a 6= w =⇒ a = −w =⇒ par(w) 6= par(a)
(remember, n is odd). From an algorithm B for which B(x) with x = f(a) = a2 predicts
par(a) we obtain an algorithm for QRP by returning:

{
a is a square if B(a2) = par(a),
a is a pseudo-square if B(a2) 6= par(a).

¤

Definition 2.23. The function f is called the Rabin function. The PRBG G
constructed according to Theorem 5.10 is called the Blum-Blum-Shub generator
(see [Wik10e]): For a Blum number n and a seed s ∈ (Z/nZ)∗ define G(s) = x0x1x2 . . .

with xi = par(s2i

). G is then a CSPRBG under the QR assumption for Blum numbers.
Begin
Lect. 17

2.d. Trapdoors. A OWP f : {0, 1}• → {0, 1}• can be viewed as a family of permu-
tations fk : {0, 1}k → {0, 1}k.

To define a OWP with a trapdoor2 we need the following ingredients:

• I, an infinite index set,
• | · | : I → N, a length function.
• Ik := {i ∈ I : |i| ≤ k} (we call k the security parameter).
• Xi for all i ∈ I, a family of finite sets.
• f = (fi)i∈I :

⋃
i∈I Xi →

⋃
i∈I Xi, a family of permutations fi : Xi → Xi.

• ti for all i ∈ I, trapdoor information (see the examples below).
• E, a polynomial algorithm with E(i, x) = Ei(x) = fi(x) for all i ∈ I and x ∈ Xi.
• D, a polynomial algorithm with D(i, ti, fi(x)) = D(i,ti)(fi(x)) = x for all i ∈ I and

x ∈ Xi.
• Sk := {(i, x) | i ∈ Ik, x ∈ Xi}, the possible inputs of E with security parameter k.

For a probabilistic algorithm A :
⋃

i∈I Xi →
⋃

i∈I Xi with output A(i, y) ∈ Xi for all
i ∈ I and y ∈ Xi define the probabilistic algorithm Af by setting

Af (i, x) =

{
1 if A(i, fi(x)) = x,
0 otherwise,

for all i ∈ I and x ∈ Xi.
As usual, let USk

denote the uniformly distributed random variable on Sk (i.e., first
choose a random i ∈ I and then a random x ∈ Xi). Then µAf◦USk

(1) is the probability of

A correctly computing the preimage x of y = fi(x).

2German: wörtlich Falltür, man sagt aber im Deutschen Hintertür
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Definition 2.24. The permutation f = (fi)i∈I :
⋃

i∈I Xi →
⋃

i∈I Xi is called a one-
way permutation with trapdoor t = (ti)i∈I if k 7→ µAf◦USk

(1) is negligible for all

polynomial algorithms A as above (cf. Definition 5.7.(1)).

Example 2.25 (Rabin function). Set I := {Blum numbers}, |n| = k = ⌊lg n⌋, Xn =
Qn, fn = qn|Qn

: x 7→ x2 mod n, tn the factorization of n, and D is the combination
of the algorithm in the proof of Theorem 2.18 with the chinese remainder theorem. We
obtain a one way permutation with trapdoor under the FACTORING assumption, which
is equivalent to the “SQROOT 6∈ BPP” assumption for Blum numbers3. The parity bit
b := par is a hardcore bit under the QR assumption (by Theorem 2.22.(2)).

Exercise 2.26. The knowledge of sufficiently many preimages of fn leads to a polyno-
mial runtime algorithm to determine tn, i.e., to factor n.

2.e. The Blum-Goldwasser construction. Given a OWP with trapdoor and
hardcore bit b Blum and Goldwasser constructed the following asymmetric probabilistic4

cryptosystem (P,C, κ,E,D) with

• P = C = {0, 1}•,
• K = I, K ′ = {(i, ti) | i ∈ I}, κ : K ′ → K, (i, ti) 7→ i,
• Ee : P Ã C, Dd : C → P as follows (compare with Example 5.13):

Let e ∈ K and p ∈ {0, 1}ℓ. Choose an arbitrary seed s ∈ Xe and compute the
sequence

r = b(s)b(fe(s)) . . . b(f ℓ−1
e (s))

together with f ℓ
e(s) ∈ Xe. Define

Ee(p) = f ℓ
e(s) · (p + r),

where, as customary, + is the bitwise addition and · the concatenation5 of bits.
Let now d = (e, te) ∈ K ′ and c = s′ · c′ with c′ ∈ {0, 1}ℓ. Use s′ = f ℓ

e(s) and the
trapdoor information te to recursively compute f ℓ−1

e (s), . . . , fe(s), s. Now compute
r = b(s)b(fe(s)) . . . b(f ℓ−1

e (s)) and return Dd(c) = c′ + r.

Definition 2.27. The Blum-Goldwasser construction applied to the Rabin func-
tion is called the Blum-Goldwasser cryptosystem.

Theorem 2.28. The Blum-Goldwasser cryptosystem is an asymmetric probabilistic
cryptosystem where

(1) the FACTORING assumption implies ASYMMETRY6 (i.e., the secret key can-
not be computed in polynomial time using the public key), and

3The equivalence is Theorem 2.18 combined with the chinese remainder theorem and Theorem 2.21.
4Recall that for an asymmetric cryptosystem to satisfy IND it must be probabilistic with E multi-

valued.
5f ℓ(s) stands for its bit-coding.
6The negation of ASYMMETRY is called “total break”. This property only makes sense for public key

cryptosystems.
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(2) the QR assumption implies CPA-IND7.

Proof. (1) By definition, computing d = (n, tn) means factoring the Blum num-
ber n.

(2) Let p1, p2 ∈ {0, 1}ℓ and ci = Ee(pi). The QR assumption, Theorem 2.22.(2),
and Theorem 5.10 imply that the construction of r defines a CSPRBG. Hence an
attacker cannot distinguish between p1 + r1 and p2 + r2 (even if f ℓ

e(s) is known,
exercise).

¤

7Cf. Definition 4.9 and Remarks 4.12 and 4.14





CHAPTER 6

Public Cryptosystems

1. RSA

Remark 1.1. Let n, e ∈ N with gcd(e, ϕ(n)) = 1. Then

fe : (Z/nZ)∗ → (Z/nZ)∗, a 7→ ae

is a permutation with inverse fd, where de ≡ 1 mod ϕ(n).

Proof. By definition ϕ(n) = |(Z/nZ)∗|. The extended Euclidian division algorithm
yields the Bézout identity de + λϕ(n) = 1. Since aϕ(n) = 1 by Lagrange’s theorem we
conclude that

a = a1 = ade+λϕ(n) = (ae)d.

¤

For an n of the form n = pq with p and q distinct primes it follows that ϕ(n) =
(p − 1)(q − 1).

Example 1.2 (RSA function). Define

• I := {(n = pq, e) | p, q are distinct primes and gcd(e, (p − 1)(q − 1)) = 1}.
For i = (n = pq, e) ∈ I define

• |i| = k := ⌊lg n⌋.
• Xi = (Z/nZ)∗.
• fi : a 7→ ae mod n.
• ti = d with de ≡ 1 mod (p − 1)(q − 1).
• D(i, ti, y) = D(i,ti)(y) = yd mod n.

Definition 1.3. The RSA problem (RSAP) is the problem of inverting the RSA
function. The RSA assumption is that RSAP 6∈ BPP.

Remark 1.4.

• The RSAP reduces to FACTORING, i.e., the RSA assumption is stronger than
the FACTORING assumption.

• Under the RSA assumption: The RSA function is a OWP with trapdoor and hard-
core bit b = par (without proof). The Blum-Goldwasser construction yields,
as for the Rabin function, a probabilistic asymmetric cryptosystem satisfying
IND-CPA.

Definition 1.5. The RSA cryptosystem is defined as follows:

57
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• P = {0, 1}k, C = {0, 1}k+1 (e.g., k = 1024).
• K = I as above.
• K ′ =
{(n = pq, d, e) | p, q distinct primes, |p|, |q| ≈ k

2
, |pq| ≥ k, de ≡ 1 mod ϕ(n)}.

• κ : (n, d, e) 7→ (n, e) ∈ K.
• E(n,e)(x) = xe mod n.
• D(n,d,e)(y) = yd mod n.

Remark 1.6. We now list the security properties of the RSA cryptosystem (assuming
a CPA attack, which is natural for public cryptosystems):

• p, q and ϕ(n) must remain secret.
• RSA assumption =⇒ OW =⇒ ASYMMETRY.
• IND is not satisfied since the cryptosystem is deterministic.
• NM is not satisfied since the cryptosystem is multiplicative: (ab)e = aebe (see

below).

Example 1.7. Let p = 11, q = 23, and e = 3. Then n = pq = 253, k = ⌊lg n⌋ = 7,
ϕ(n) = (p − 1)(q − 1) = 10 · 23 = 220, and d = 147 with ed = 441 ≡ 1 mod 220.
For p = 0110100 = (52)10 we compute c = Ee(p) = 523 = 193 mod 253 = (1100001)2.
D(253,147,3)(c) = 193147 ≡ 52 mod 253 = p.
Violating the NM: To shift p one position to the left we manipulate c to c′ = Ee(2) · c =
23 · 193 = 26 mod 253. Then D(253,147,3)(c) = 26147 ≡ 104 mod 253 = (1101000)2.

Begin
Lect. 18 In analogy with the trivial statement of Theorem 2.28.(1) for the Blum-Goldwasser

cryptosystem we prove:

Theorem 1.8. The FACTORING assumption implies the ASYMMETRY of the RSA
cryptosystem, i.e., the secret key d cannot be computed in polynomial time using the public
key (n, e).

Proof. Assume, a CPA adversary1 can compute the secret key d. We need to show
that he can then factor n using the knowledge of (n, d, e) ∈ K ′:
The chinese remainder theorem provides an isomorphism

(Z/nZ)∗ → (Z/pZ)∗ × (Z/qZ)∗, a mod n 7→ (a mod p, a mod q).

In particular ord(Z/nZ)∗(a) = lcm(ord(Z/pZ)∗(a), ord(Z/qZ)∗(a)). The idea is to use the follow-
ing trivial equivalence

c ≡ 1 mod p, c 6≡ 1 mod q ⇐⇒ p | c − 1, q ∤ c − 1 ⇐⇒ (c − 1, n) = p

to factor n. So our goal is to construct such an element c.
For any a we have that ord(Z/pZ)∗(a) | p − 1, ord(Z/qZ)∗(a) | q − 1, and ord(Z/nZ)∗(a) |
(p − 1)(q − 1) = ϕ(n) | ed − 1. Write ed − 1 = 2st with t odd. Then (at)2s

= 1, hence
ord(Z/nZ)∗(a

t) | 2s. Choose randomly an element b ∈ ((Z/nZ)∗)t, for instance b = at with
a ∈ (Z/nZ)∗ randomly chosen. Then ord(Z/pZ)∗(b) = 2i and ord(Z/qZ)∗(b) = 2j with i, j ≤ s.

1German: Gegner, Kontrahent
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If i 6= j, or w.l.o.g. i < j, then c := b2i ≡ 1 mod p and c 6≡ 1 mod q and we get the
factorization p = (c − 1, n).
We now prove that i 6= j for (at least) half of all a ∈ (Z/nZ)∗ (recall, b := at). Recall that
the choice of a primitive element g ∈ (Z/pZ)∗ yields an isomorphism (Z/(p − 1)Z, +) →
(Z/pZ)∗, x 7→ gx. As above, ord(Z/(p−1)Z,+)(1) = p − 1 | 2st and ord(Z/(p−1)Z,+)(t) = 2s.
Using the identification (Z/nZ)∗ ∼= (Z/pZ)∗×(Z/qZ)∗ ∼= (Z/(p−1)Z, +)×(Z/(q−1)Z, +)
it is equivalent to show that the inequality ord(Z/(p−1)Z,+)(xt) 6= ord(Z/(q−1)Z,+)(yt) holds for
(at least) half of all pairs (x, y) ∈ (Z/(p − 1)Z, +) × (Z/(q − 1)Z, +).
Proof of the inequality: Let ord(Z/(p−1)Z,+)(t) = 2k and ord(Z/(q−1)Z,+)(t) = 2ℓ. Note that
ord(Z/(p−1)Z,+)(t) = ord(Z/(p−1)Z,+)(xt) for all x odd (trivial). Now we distinguish to cases:

k 6= ℓ: Again, w.l.o.g. let ℓ < k. Then for all (x, y) with x odd we obtain:

ord(Z/(q−1)Z,+)(yt) ≤ ord(Z/(q−1)Z,+)(t) = 2ℓ < 2k = ord(Z/(p−1)Z,+)(t) ord(Z/(p−1)Z,+)(xt).

k = ℓ: This case is left as an exercise.

¤

Example 1.9 (Example 1.7 continued). As above let n = 253 = 11 ·23, e = 3, d = 147,
ed − 1 = 220 = 22 · 55. So s = 2 and t = 55. Try a = 2: b = at = 255 ≡ 208 mod 253.
Compute (b2i − 1, n) for i = 0, 1 < s = 2: (208 − 1, 253) = 23.

Summing up, we get the following implications of security assumptions2 for the RSA
cryptosystem (under a CPA attack):

RSA +3

®¶

FACTORING

®¶

OW +3 ASYMMETRY

2. Elgamal

Recall: Let p be a prime and g be a generator of (Z/pZ)∗. The problem of inverting
expg : (Z/pZ)∗ → (Z/pZ)∗, x 7→ gx is the discrete logarithm problem (DLP). expg is a

OWP3 under the DL assumption. We don’t have candidates for a trapdoor.

Definition 2.1. Let p be a prime number and (Z/pZ)∗ = 〈g〉.
• The problem of computing gαβ given gα and gβ is called Diffie-Hellman

problem (DHP)
• The Diffie-Hellman or DH assumption is that DHP 6∈ BPP.

Remark 2.2. The DHP reduces to the DLP, i.e., the DH assumption is stronger than
the DL assumption. The equivalence is unknown.

Definition 2.3. The Elgamal cryptosystem is defined by

• P = {0, 1}k and C = {0, 1}2(k+1).

2... not the problems. For the “hardness of the problems” you have to invert the arrows.
3g0 = gp−1 = 1.
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• K ′ = {(p, g, a) | p prime, 〈g〉 = (Z/pZ)∗, 2k < p < 2k+1, a ∈ {0, . . . , p − 2}}.
• κ : (p, g, a) 7→ (p, g, ga) ∈ K.

We encode {0, 1}k ⊂ (Z/pZ)∗ ⊂ {0, 1}k+1. So we “replace” P by (Z/pZ)∗ and C by
(Z/pZ)∗ × (Z/pZ)∗. For e = (p, g, A = ga) and d = (p, g, a) we define

• Ee(x) := (gb, Abx), where b ∈ {0, . . . , p − 2} is chosen randomly.
• Dd(y, z) := y−az.

Of course, a has to be kept secret.

Proof of correctness. (gb)−aAbx = g−ba+abx = x. ¤

Example 2.4. Take p = 23 and g = 7. For a = 6, i.e., d = (23, 7, 6) compute
A = 76 ≡ 4 mod 23. e = κ(d) = (23, 7, 4). For x = 7 ∈ (Z/23Z)∗ = P compute Ee(x) for
different b’s:

b = 3: Ee(x) = (73, 43 · 7) = (21, 11) ∈ (Z/23Z)∗ × (Z/23Z)∗ = C.
b = 2: Ee(x) = (72, 42 · 7) = (3, 20) ∈ (Z/23Z)∗ × (Z/23Z)∗ = C.

Now verify Dd(21, 11) = 21−6 · 11 ≡ 7 mod 23 ≡ 3−6 · 20 = Dd(3, 20).

Remark 2.5. The Elgamal cryptosystem is a probabilistic public key cryptosystem
with multi-valued E. It

• satisfies the IND-CPA security model under the DL assumption (without proof).
• does not satisfy NM because of its multiplicativity (like RSA, cf. Remark 1.6).

Theorem 2.6. Under a CPA attack the (probabilistic public key) Elgamal cryptosys-
tem satisfies

(1) OW under the DH assumption.
(2) ASYMMETRY under the DL assumption.

Proof. (1) Assume the adversary can decrypt ciphertexts, i.e., from the public
key information ga and the ciphertext (gb, gabx) he can computer x. Then he can
in particular decrypt (gb, 1) to obtain g−ab and hence gab.

(2) If a CPA adversary (i.e., who has full access to A = ga and Ee) can compute the
secret key information a, then he has already solved the DLP.

¤
Begin
Lect. 19

3. The Rabin cryptosystem

Definition 3.1. The Rabin cryptosystem is defined as follows:

• P = {0, 1}k and C = {0, 1}k+1.
• K ′ = {(p, q) | p, q distinct primes, p, q ≡ 3 mod 4, 2k < pq < 2k+1}.
• κ : (p, q) 7→ pq ∈ K = {n ∈ N | 2k < n < 2k+1 a Blum number}.

We encode {0, 1}k ⊂ (Z/nZ)∗ ⊂ {0, 1}k+1. So we “replace” P and C by (Z/nZ)∗. For
e = n and d = (p, q) we define

• Ee(x) := x2 mod n (not injective!)
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• Dd(y) := the four square roots of x2 mod n (not uniquely determined!) using the
chinese remainder theorem and the simple case “p ≡ 3 mod 4” in the proof of
Theorem 2.18.

Example 3.2. Take p = 3 and q = 7. Then n = 21 is the public key of the Rabin

cryptosystem. To encrypt the plain text 10 ∈ (Z/21Z)∗ we compute

c = 102 = 16 mod 21.

To decrypt c = 16 using the secret prime factors p = 3 and q = 7 we compute the four
square roots of 16 modulo 21: We have

16
p+1
4 = 16 ≡ 1 mod 3 and 16

q+1
4 = 162 ≡ 4 mod 7.

Hence

• 1 and −1 ≡ 2 mod 3 are the square roots of 16 modulo 3.
• 4 and −4 ≡ 3 mod 7 are the square roots of 16 module 7.

With the chinese remainder theorem we get the four combinations

(1, 4), (1, 3), (2, 4), (2, 3)

and finally the four square roots

4, 10, 11, 17,

among which we search for the (hopefully unique) human readable “plain text” 10.

Theorem 3.3. For the Rabin cryptosystem the following implications of assumptions
hold (under a CPA attack)

FACTORING =⇒ OW =⇒ ASYMMETRY.

Proof. If an attacker can decrypt ciphertexts he can choose random elements x ∈
(Z/nZ)∗ and compute square roots of x2. By Theorem 2.21 he obtains a factorization of
n, a total break. This proves the first implication. The second implication is trivial. ¤

Remark 3.4. Restricting P to Qn does not eliminate the non-uniqueness issue: How
to find an injective encoding {0, 1}k → Qn?.

4. Security models

Remark 4.1. We know that the following security models are not fulfilled:

• The Blum-Goldwasser does not satisfy the security model IND-CCA2 (exer-
cise).

• The same reasoning as in the proof of Theorem 3.3 shows that the Rabin cryp-
tosystem does not fulfill the security model ASYMMETRY-CCA2.
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We have the following hierarchy of assumptions

FACTORINGdl

QQQQQQQQQQQQ

QQQQQQQQQQQQ3;

ooooooooooo

ooooooooooo
DLKS

RSA SQROOT
KS

DH

QR

Remark 4.2. It is conjectured that all backward implications in the above diagram
hold4. These conjectures would imply that the RSA, Elgamal, and Blum-Goldwasser

cryptosystems do not fulfill the security model ASYMMETRY-CCA2:

• RSA=FACTORING =⇒ RSA 6∈ ASYMMETRY-CCA2.
• DH=DL =⇒ Elgamal 6∈ ASYMMETRY-CCA2.
• QR=SQROOT =⇒ Blum-Goldwasser 6∈ ASYMMETRY-CCA2 (exercise).

4.a. IND-CCA2. One can modify the Blum-Goldwasser cryptosystem in such a
way, that it fulfills IND-CCA2. For this we need the concept of a one-way hash function,
which is, roughly speaking, a one-way function H : {0, 1}• → {0, 1}k for some k ∈ N.

Remark 4.3. The modified Blum-Goldwasser cryptosystem (cf. Definition 2.27)

Ee(p) = f ℓ
e(s + H(y)) · (p + r)︸ ︷︷ ︸

y

now satisfies, under the QR assumption, the security model IND-CCA2.

4.b. OAEP. We now describe the so-called optimal asymmetric encryption pad-
ding5 (OAEP) [Wik11d] which is often used to improve the security of public key cryp-
tosystems by preprocessing plaintexts prior to the asymmetric encryption:

• Fix a security parameter k ∈ N.
• Fix k0, k1 ∈ N with ℓ := k − k0 − k1 > 0.
• Fix a CSPRBG

G : {0, 1}k0 → {0, 1}ℓ+k1

.
• Fix a one-way hash function

H : {0, 1}ℓ+k1 → {0, 1}k0 ,

called the compression function.

4Recall that we already know that for Blum numbers the FACTORING assumption =⇒ SQROOT
assumption (cf. Theorem 2.21).

5German: Polsterung
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For an n-bit plaintext p and seed s ∈ {0, 1}k0 return the k-bit concatenated string

p′ =


(p · 0 . . . 0︸ ︷︷ ︸

k1

) + G(s)




︸ ︷︷ ︸
=:y∈{0,1}n+k1

· (s + H(y)).

Now one can apply the OWP f : {0, 1}k → {0, 1}k of public key cryptosystem to the
padded message p′.

Definition 4.4. The probabilistic public key cryptosystem obtained by applying the
RSA function to an OAEP-preprocessed message p′ is called the RSA-OAEP cryptosys-
tem.

Assuming the existence of a so-called ideal compression function H one can prove that

Theorem 4.5 (2001). The RSA-OAEP cryptosystem satisfies the security model IND-
CCA2 under the RSA assumption.





CHAPTER 7

Primality tests

In this chapter we want to study various sorts of probabilistic and deterministic pri-
mality test. Let us denote by P ⊂ N the set of prime numbers.

1. Probabilistic primality tests

1.a. Fermat test. Recall that for p ∈ P Fermat’s little theorem1 states that
ap−1 ≡ 1 mod p for all a ∈ Z \ pZ. This yields the so-called Fermat test, an elementary
probabilistic test for primality, which lies in O(log3 n):
If for a natural number n we succeed to find an a ∈ (Z/nZ)∗ with an−1 6≡ 1 mod n then n
is not a prime. Note that finding an a ∈ Nn := ((Z/nZ) \ {0}) \ (Z/nZ)∗ is hopeless if n
is the product of huge primes (compare n = |Z/nZ| and n − ϕ(n) = |Nn| + 1).

Example 1.1. Let n = 341. For

a = 2: 2340 ≡ 1 mod 341.
a = 3: 3340 ≡ 56 mod 341.

Hence, 341 is a composite number and 3 is a witness.

Definition 1.2. Let n ∈ N and a ∈ (Z/nZ)∗.

(1) n is called a pseudoprime with Fermat nonwitness a if

an−1 ≡ 1 mod n,

i.e., the Fermat test of the primality of n passes for a.
(2) If n is a pseudoprime with Fermat nonwitness a but not prime then a is called

a Fermat liar.
(3) If the Fermat test of the primality of n fails for a, i.e., if

an−1 6≡ 1 mod n,

then a is called a Fermat witness (for the compositeness) of n.
(4) n is called a Carmichael number if n is a composite number without a Fer-

mat witness, i.e., if all a ∈ (Z/nZ)∗ are Fermat liars.

Of course, each prime is a pseudoprime for all a ∈ (Z/nZ)∗. In 1994 it was proven that
the set of Carmichael numbers is infinite:

561 = 3 · 11 · 17, 1105 = 5 · 13 · 17, 1729 = 7 · 13 · 19, . . .
Begin
Lect. 201This is a special case of Euler’s Theorem aϕ(n) ≡ 1 mod n, for the case n = p ∈ P.
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Lemma 1.3. Let n be a Carmichael number and p ∈ P. Then

(1) n is odd.
(2) n is square free.
(3) p | n =⇒ p − 1 | n − 1.
(4) n has at least 3 prime factors.

Proof. (1) n even =⇒ n − 1 odd
n

Carmichael
+3 −1 = (−1)n−1 = 1 ∈ (Z/nZ)∗

=⇒ n = 2 prime Ã (since 2 as a prime is not Carmichael).
(2) Write n = pe · n′, where e is the maximal p-power. Then ϕ(n) = ϕ(pe)ϕ(n′) =

pe−1(p − 1)ϕ(n′). p2 | n implies:
• p | ϕ(n) = |(Z/nZ)∗| =⇒ ∃a ∈ (Z/nZ)∗ with ord(Z/nZ)∗(a) = p.

• p | n =⇒ p ∤ n − 1
ord(a)=p
=⇒ an−1 6≡ 1 mod n =⇒ a is a Fermat witness for

n =⇒ n not Carmichael.
(3) Let p be a prime divisor of n. Since an−1 = 1 in (Z/nZ)∗ it follows that an−1 = 1

in the factor group (Z/pZ)∗, for all a ∈ Z with (a, n) = 1. Since (Z/pZ)∗ is cyclic
we deduce that p− 1 = |(Z/pZ)∗| | n− 1 (choose a to be a primitive element, i.e.,
a generator of (Z/pZ)∗).

(4) Exercise.
¤

The existence of infinitely many Carmichael numbers means that we cannot trust
the Fermat primality test (unless of course it produces a Fermat witness).

1.b. Miller-Rabin test. The Miller-Rabin test makes use of the fact that the
equation a2 = 1 has exactly two solutions a = ±1 over Z/nZ if n is a prime (since then
Z/nZ is a field).

Lemma 1.4 (Miller-Rabin). Let a ∈ (Z/pZ)∗. Write p− 1 = 2st with t odd (s ≥ 0).
Then

at ≡ ±1 mod p or

a2rt ≡ −1 mod p for an 0 < r < s.

Proof. Let 0 ≤ s0 ≤ s minimal with a2s0 t = 1 (recall ap−1 = 1). We distinguish two
cases:

s0 = 0 : at = 1.
s0 > 0 : a2rt = −1 with r = s0 − 1 ∈ {0, . . . , s − 1}.

¤

Definition 1.5. Let n be a composite number. Write n − 1 = 2st with t odd (so
s ≥ 0). a ∈ (Z/nZ)∗ is called a Miller-Rabin nonwitness if

at ≡ ±1 mod n or(±1)

a2rt ≡ −1 mod n for an 0 < r < s,(−1)

otherwise a Miller-Rabin witness (for the compositeness of n).
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Example 1.6. Consider n = 561: n−1 = 560 = 24 ·35, so s = 4 and t = 35. For a = 2
we compute

235 ≡ 263 mod 561
}

6≡ 1,−1 mod 561
22·35 ≡ 166 mod 561
24·35 ≡ 67 mod 561
28·35 ≡ 1 mod 561



 6≡ −1 mod 561

So a = 2 is a Miller-Rabin witness for Carmichael number 561.

Remark 1.7. If the generalized Riemann hypothesis holds, then p is a prime if
one of the conditions (±1) or (−1) is fulfilled for each 1 < a < 2 log2 n. This turns the
probabilistic Miller-Rabin test into a deterministic one. See Remark 1.12 below.

Definition 1.8. For a fixed n ∈ N define

N := {Miller-Rabin nonwitness for n} ⊂ (Z/nZ)∗.

The idea is to find a subgroup U ≤ (Z/nZ)∗ with N ⊂ U and to bound the index
(Z/nZ)∗ : U from below away from 1. A natural candidate would be

U0 := {a ∈ (Z/nZ)∗ | an−1 = 1} = {Fermat nonwitness} = ker(x 7→ xn−1) ≤ (Z/nZ)∗.

But we know that the index (Z/nZ)∗ : U0 might be 1:

U0 = (Z/nZ)∗ ⇐⇒ n is a prime or a Carmichael number.

Lemma 1.9. Let n = pα for α ≥ 2. Then (Z/nZ)∗ : U0 ≥ p.

Proof. p | pα−1(p − 1) = ϕ(n) = |(Z/nZ)∗|. Then there exists an a ∈ (Z/nZ)∗ with
ord(a) = p. On the other hand p | n =⇒ p ∤ n−1 =⇒ an−1 6≡ 1 mod n =⇒ a 6∈ U0. The
same holds for a2, . . . , ap−1. Hence U0, aU0, a

2U0, . . . , a
p−1U0 ∈ (Z/nZ)∗/U0 are pairwise

different and (Z/nZ)∗ : U0 ≥ p. ¤

Theorem 1.10. Let n be a composite odd number with 2, 3 ∤ n. Then |N | ≤ ϕ(n)
4

< n
4
.

Proof. Again write n − 1 = 2st with t odd (so s ≥ 1). Set N−1 := {a ∈ N | at ≡
1 mod n} and Ni := {a ∈ N | a2it ≡ −1 mod n} for 0 ≤ i < s. Then N =

⋃s−1
i=−1 Ni with

−1 ∈ N0 6= ∅. Set r := max{i | Ni 6= ∅} ∈ {0, . . . , s − 1} and m := 2rt. In particular,
m | n−1

2
(because r < s). For all a ∈ N

(4) am ≡
{

−1 if a ∈ Nr

1 if a ∈ Ni, i < r.

Consider the group endomorphism f : (Z/nZ)∗ → (Z/nZ)∗, a 7→ am. Let n = pα1
1 · · · pαu

u

be the factorization of n as the product of prime powers. The chinese remainder theorem
yields the isomorphism

(Z/nZ)∗ ∼= (Z/pα1Z)∗ × · · · × (Z/pαuZ)∗,
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identifying a ∈ (Z/nZ)∗ with the u-tuple (a mod pα1 , . . . , a mod pαu). We make use this
isomorphism to define the chain of subgroups

(Z/nZ)∗

≤

U0 := ker(x 7→ xn−1) = {a ∈ (Z/nZ)∗ | an−1 ≡ 1 mod n},

≤

U1 := f−1({(±1, . . . ,±1)}) = {a ∈ (Z/nZ)∗ | am ≡ ±1 mod pαi

i , 1 ≤ i ≤ u}

≤

U2 := f−1({±1}) = {a ∈ (Z/nZ)∗ | am ≡ ±1 mod n},

≤

U3 := f−1({1}) = {a ∈ (Z/nZ)∗ | am ≡ 1 mod n}.
U1 is a subgroup of U0 since m | n−1

2
(see above). The remaining inclusions are obvious as

the preimages of inclusions of a chain of subgroups. Since N ⊂ U2 we want to bound the
index (Z/nZ)∗ : U2 from below away from 1. We claim that

(Z/nZ)∗ : U2 ≥ 4.

To this end we prove that the subgroup {(±1, . . . ,±1)} ≤ im f :
Choose a b ∈ Nr 6= ∅, then f(b) = bm ≡ −1 mod n, hence, bm ≡ −1 mod pαi

i for all
i = 1, . . . , u. Now let y be an arbitrary element of the elementary Abelian subgroup2

{(±1, . . . ,±1)} ∼= (Fu
2 , +), w.l.o.g. we can assume that y = (1, . . . , 1,−1, . . . ,−1). Then

x := (1, . . . , 1, b, . . . , b) is a preimage of y under f , i.e., f(x) = y. Summing up:

U3 <︸︷︷︸
2

U2 ≤︸︷︷︸
2u−1︸ ︷︷ ︸

2u

U1 ≤ U0 ≤ (Z/nZ)∗.

We now distinguish three cases:

u ≥ 3: U2 <︸︷︷︸
≥4

U1 ≤ U0 ≤ (Z/nZ)∗.

u = 2: U2 <︸︷︷︸
2

U1 ≤ U0 <︸︷︷︸
≥2︸ ︷︷ ︸

≥4

(Z/nZ)∗, by Lemma 1.3.(4).

u = 1: U2 =︸︷︷︸
1

U1 ≤ U0 <︸︷︷︸
≥p≥5

(Z/nZ)∗, by Lemma 1.9 and the assumptions on n.

This finishes the proof. ¤

The proof provides a probabilistic primality test in O(log3 n). If the Miller-Rabin

test passes for i randomly chosen different a’s then the probability of n being prime is

greater than 1 −
(

1
4

)i
.

Example 1.11. Now we demonstrate the difference between the Fermat test and the
Miller-Rabin test on a trival example. Let n := 185:

22 ∤ n =⇒ 1 6≡ −1 mod pαi

i for all i = 1, . . . , u.
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a 1 −1 43 36 6 2
∈ N−1 ∈ N0 ∈ N1 = Nr N2 = ∅

at 1 −1 6≡ ±1 6≡ ±1 6≡ ±1 6≡ ±1
a2t 1 1 −1 1 6≡ −1 6≡ −1
a4t 1 1 1 1 1 6≡ −1

Miller-Rabin nonwitnesses Miller-Rabin witnesses
a8t 1 1 1 1 1 6≡ 1

Fermat nonwitnesses Fermat witnesses

Remark 1.12. One can prove that an

n < 2047 is prime ⇐⇒ (±1) or (−1) is fulfilled for a = 2.
n < 1373653 is prime ⇐⇒ (±1) or (−1) is fulfilled ∀a ∈ {2, 3}.
...
n < 341550071728321︸ ︷︷ ︸

>3.4·1014

is prime ⇐⇒ (±1) or (−1) is fulfilled ∀a ∈ {2, . . . , 17},

i.e., for all of the first 7 primes.

For such n’s the probabilistic Miller-Rabin test becomes a deterministic one.
Begin
Lect. 21

2. Deterministic primality tests

2.a. The AKS-algorithm. In this subsection we sketch the AKS-test, which was
proposed by Agrawal and his master students Kayal and Saxena in 20023 as the first
deterministic polynomial runtime primality test.

Lemma 2.1. Let n ∈ N \ {1} and a ∈ Z coprime to n. Then4

n is prime ⇐⇒ (x + a)n = xn + a mod n.

Proof. =⇒: Let n ∈ P. The n |
(

n
i

)
for all 0 < i < n. Further, an ≡ a mod n (recall,

n is prime). Then (x + a)n =
∑n

i=0

(
n
i

)
aixn−i ≡ xn + an ≡ xn + a mod n.

⇐=: Let (x + a)n =
∑n

i=0

(
n
i

)
aixn−i ≡ xn + a mod n (*). Let p be a prime divisor of n.

Then
(

n
p

)
:= n(n−1)···(n−p+1)

p(p−1)···1 is not divisible by n, since p | n and p ∤ (n− 1), . . . , (n− p + 1).

Together with (a, n) = 1 this implies that
(

n
p

)
ap 6≡ 0 mod n. Hence n = p by (*). ¤

The idea is to consider the equation

(x + a)n ≡ xn + a mod (n, xr − 1),

for a fixed r, i.e., reduce the coefficients modulo n and the polynomial modulo xr − 1.
We state without proof:

3Published 2004 in the Annals of Mathematics: PRIMES is in P.
4The right hand side is an identity of polynomials in x.
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Theorem 2.2 (AKS-criterion). Let 2 < n ∈ N and r ∈ N coprime to n. Further let
1 < s ∈ N with (a, n) = 1 for all a = 1, . . . , s and

(AKS)

(
ϕ(r) + s − 1

s

)
> n2d⌊

q

ϕ(r)
d

⌋ for all d | ϕ(r)

t
,

where t := |〈n〉(Z/rZ)∗ |. If

(x + a)n ≡ xn + a mod (n, xr − 1), for all a = 1, . . . , s,

then n is a prime power.

To justify an early step in the AKS algorithm below we need a simple corollary of the
following Lemma which we also state without proof:

Lemma 2.3 (Chebyshev5). For k ≥ 2
∏

p∈P

p≤2k

p > 2k.

Corollary 2.4. Let N ≥ 2 be a natural number of bit length k := ⌈lg N⌉. Then there
exists a prime p ≤ 2k with p ∤ N .

Proof. N < 2k, by definition of k. Now use the previous Lemma. ¤

The following version of the AKS-algorithm is due to Lenstra and Bernstein.

Algorithm 2.5. Let n ∈ N \ {1} be an odd number.

(1) Compute (the factors of) N := 2n(n − 1)(n2 − 1) · · · (n4⌈lg n⌉2 − 1) of bit length
k := ⌈lg N⌉.

(2) Find the smallest prime r ≤ 2k with r ∤ N . If, before reaching the smallest prime
r, you discover that
(a) n is a prime (n < r) then return: n prime.
(b) a prime p | n (p < r) then return: n composite.

(3) If there is an element a ∈ {1, . . . , r} with (x + a)n 6≡ xn + a mod (n, xr − 1) then
return: n composite.

(4) If there is an element a ∈ {1, . . . , logr n} with a
√

n ∈ N then return: n composite.
(5) return: n prime.

Theorem 2.6. Algorithm 2.5 is correct and has polynomial runtime, i.e., it lies in
O(f(ℓ)), where f is a polynomial in ℓ := ⌈lg n⌉.

Proof. (1) The factors n − 1, n2 − 1, . . . , n4⌈lg n⌉2 − 1 can be computed with less

than 4ℓ2 lg(4ℓ2) multiplications. Further lg N ≤ 1 + lg n + (lg n)
∑4ℓ2

i=1 i ≤ 1 + ℓ +

ℓ (4ℓ2+1)4ℓ2

2
, in particular, the bit length k := ⌈lg N⌉ is polynomial in ℓ.

(2) The runtime of listing all primes ≤ 2k is a polynomial in ℓ. If case (a) or (b) occur
then the algorithm terminates.

5German: Tschebyscheff
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(3) Claim (i): t := |〈n〉(Z/rZ)∗| > 4ℓ2. Proof: If not then there would exist an i ∈
{1, . . . , 4ℓ2} with ni ≡ 1 mod r =⇒ r | ni − 1 | N Ã.
Consider the AKS-criterion for s = r. The previous steps guarantee that (a, n) = 1
for all a = 1, . . . , r = s (recall, r ∤ n since n | N).

Claim (ii): The (AKS) inequality is fulfilled. Proof: From d ≤ ϕ(r)
t

Claim (i)
< ϕ(r)

4ℓ2
it

follows that

(*) 2d⌊
√

ϕ(r)

d
⌋ ≤ 2d

√
ϕ(r)

d
=

√
4dϕ(r)

here
<

ϕ(r)

ℓ
≤ ϕ(r)

lg n
.

Further 2 | N =⇒ r ≥ 3 =⇒ ϕ(r) = r − 1 ≥ 2 =⇒
(

ϕ(r) + s − 1

s

)
=

(
ϕ(r) + r − 1

r

)
=

(
2ϕ(r)

ϕ(r) + 1

)
≥ 2ϕ(r) = n

ϕ(r)
lg n

(*)
> n2d⌊

q

ϕ(r)
d

⌋.

The AKS-criterion (Theorem 2.2) can now be applied proving the correctness of
step (3). Note that exponentiating with n is polynomial in ℓ.

(4) If this step is reached then n is a prime power by the AKS-criterion. That this
step is also polynomial in ℓ is an easy exercise.

¤





CHAPTER 8

Integer Factorization

Consult [Wik11e] for the current state of the RSA factorization challenge. Be aware
that n in RSA-n refers to the number decimal digits if n ≤ 500 or n = 617, e.g., RSA-232,
otherwise to the number of binary digits, e.g., RSA-768, which also has 232 decimal digits,
and was successfully factored in December 12, 2009 [KAF+10]:

The following effort was involved. We spent half a year on 80 processors
on polynomial selection. This was about 3% of the main task, the sieving,
which was done on many hundreds of machines and took almost two years.
...

There is no polynomial algorithm known up to date.

1. Pollard’s p − 1 method

Definition 1.1. Let B ∈ N. An n ∈ N is called

(1) B-smooth if all its prime divisors are less than or equal to B.
(2) B-powersmooth if all its prime power divisors are less than or equal to B.

We now describe Pollard’s p − 1 method to factor an integer n ∈ N where p is a
prime divisor of n:
If (a, n) = 1 for an a ∈ Z then ap−1 ≡ 1 mod p (Fermat’s little theorem). Assume p − 1
is B-powersmooth for a “small” bound B ∈ N. Then p − 1 | lcm{1, . . . , B} and hence
alcm{1,...,B} ≡ 1 mod p, or equivalently p | alcm{1,...,B} − 1. In particular:

(alcm{1,...,B} − 1, n) > 1

and we have found a divisor1 of n.
A good heuristic value for B is B ≥ n

1
2(1− 1

e) ≈ n0.316. So for a fixed B the method
should be able to cover all n ≤ B2 e

e−1 ≈ B3.164. Typically one chooses B ≈ 106 which
allows handling numbers n ≤ 1019.

Exercise 1.2. Describe a factorization algorithm using the above idea. Use your
algorithm to factor 1633797455657959.

Begin
Lect. 22

1Of course, the gcd might be n.
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2. Pollard’s ρ method

Let n be a composite number and x0, x1, . . . be a sequence in Z/nZ. For a prime divisor
p of n set yk := xk mod p. Since Z/pZ is finite two y’s, say yµ and yµ+λ (µ ∈ Z≥0 and
λ ∈ N), will eventually coincide: yµ+λ = yµ ∈ Z/pZ, or equivalently, p | xµ+λ − xµ. But
then d := (xµ+λ−xµ, n) > 1 is factor of n. The trivial (improbable) case d = n only occurs
if already xµ+λ = xµ ∈ Z/nZ.

If the sequence x0, x1, . . . ∈ Z/nZ is chosen randomly then y0, y1, . . . will be a random
sequence in Z/pZ, and the birthday problem [Wik11a] will imply that after approxi-
mately

√
p random choices two y’s, say yµ and yµ+λ, will coincide with probability 1

2
.

To produce a pseudo-random sequence, Pollard suggested a recursion using a polyno-
mial f ∈ Z[x]. For an initial value x0 ∈ Z/nZ set xk+1 := f(xk) mod n. For yk := xk mod p
still yk+1 ≡ f(yk) mod p. One often uses the nonlinear polynomial f := x2 + c with
c 6= 0 ∈ Z/nZ, typically c = ±1.

Recall that any recursive sequence in a finite set eventually becomes periodic, giving
this method its name ρ. There are several cycle-detection algorithms. The two most
prominent ones are Floyd’s tortoise2 and hare3 algorithm and Brent’s algorithm
[Wik11b]. Their goal is to

(1) avoid too much comparisons.
(2) find the minimal µ and the period length λ.

Of course, only the first goal is relevant for us, where the comparison step in the cycle-
detection algorithm has to be replaced by the gcd computation: (yµ+λ − yµ, n).

The following version of the Pollard’s ρ method is based on Floyd’s algorithm:

Algorithm 2.1 (Pollard’s ρ method). Given a composite number n ∈ N the fol-
lowing algorithm returns a nontrivial factor of n or fail.

(1) x := 1, z := 1, d := 1
(2) while d = 1 do

• x := f(x)
• z := f(f(z))
• d := (z − x, n)
• if d = n then return fail

(3) return d

3. Fermat’s method

Fermat’s method for factoring a composite number n tries to write it as the differ-
ence of two squares n = x2 − y2, yielding the factorization n = (x + y)(x− y). Indeed, for
a composite odd number n = ab such a representation always exists: Setting x := a+b

2
and

y := a−b
2

we recover a = x + y and b = x − y.

2German: Schildkröte
3German: Feldhase
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Example 3.1. Let n = 7429. x = 227 and y = 210 satisfy x2 − y2 = n with x− y = 17
and x + y = 437. Hence n = 17 · 437.

4. Dixon’s method

Dixon’s method for factoring a composite odd number n is a relaxation of Fermat’s
one. It is based on the following fact: If x, y are integers with

x2 ≡ y2 mod n and x 6≡ ±y mod n

then (x − y, n) (and (x + y, n)) is a nontrivial divisor of n.

Example 4.1. Let n = 84923. Taking x = 20712 and y = 16800 we compute x2−y2 =
1728 · n, x − y = 3912 (and x + y = 37512). Hence (x − y, n) = 163 and n = 163 · 521.

Algorithm 4.2 (Dixon’s algorithm). Given a composite number n ∈ N the following
algorithm returns a nontrivial factor of n or fail.

(1) F := {p1, . . . , pk} ⊂ P be a set of k distinct “small” primes, where k is “small”. We
call F a factor base4.

(2) Find x1, . . . , xm ∈ N (m > k) such that x2
i = pe1i

1 · · · peki

k mod n.
(3) Set vi := ((e1i, . . . , eki) mod 2) ∈ Fk

2 for i = 1, . . . ,m. Solve the F2-linear system
m∑

i=1

εivi = 0 ∈ Fk
2.

(4) Set (a1, . . . , ak) := 1
2

∑m
i=1 εi(e1i, . . . , eki) ∈ Zm

≥0. Define

x :=
m∏

i=1

xεi

i and y := pa1
1 · · · pak

k .

Then

x2 =
m∏

i=1

x2εi

i ≡
m∏

i=1

(pεie1i

1 · · · pεieki

k ) = p
Pm

i=1 εie1i

1 · · · p
Pm

i=1 εieki

k = p2a1
1 · · · p2ak

k = y2 mod n.

(5) If x 6≡ y mod n then return (x − y, n) else return fail.

Example 4.3. Again let n = 7429. Take F = {2, 3, 5, 7}.
872 ≡ 22 · 5 · 7 mod 7429
882 ≡ 32 · 5 · 7 mod 7429

So v1 = v2 = (0, 0, 1, 1) ∈ F4
2 and ε1 = ε2 = 1 since v1 + v2 ∈ F4

2. Hence (a1, . . . , a4) =
(1, 1, 1, 1) ∈ Z4

≥0, x = 87 · 77 ≡ 227 mod n and y = 2 · 3 · 5 · 7 ≡ 210 mod n. As we saw in
Example 3.1 above (x − y, n) = (17, n) = 17.

Exercise 4.4. Treat Example 4.1 using Dixon’s algorithm.
Hint: Try x1 := 513 and x2 := 537.

4German: Faktorbasis
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5. The quadratic sieve

The quadratic sieve (QS)5 of Pomerance is an optimization of Dixon’s method.
The goal is to find xi’s close to the square root

√
n such that x2

i is B-smooth mod n for a
“small” bound B ∈ N (see Algorithm 4.2, step (2)).

As candidates for these smooth x2
i consider the quantities

Q(a) := (⌊√n⌋ + a)2 − n ∈ Z,

for a in some sieve interval S := {−s, . . . , s} ⊂ Z with width s.
As Q(a) might be negative a slight modification of Dixon’s method turns out to be

useful:

Exercise 5.1. Describe a modified version of Dixon’s method allowing the factor base
F to include −1 (the “sign”).

By definition, Q(a) is a square mod n, that is Q(a) ≡ x2 mod n with x = ⌊√n⌋ + a.
The key observation is the content of the following

Remark 5.2. Let q ∈ N \ {1} and x, a ∈ Z.

(1) x2 ≡ n mod q ⇐⇒ q | Q(a) for a = x − ⌊√n⌋.
(2) q | Q(a) =⇒ q | Q(a + kq) for all k ∈ Z.

Proof. (1) is trivial by the definition of Q(a).
(2) More generally, Q(x + kq) ≡ Q(x) mod q since computing mod q is a ring homo-

morphism Z[x] ։ Z/qZ[x].
¤

In words: q is a divisor of Q(a) for a = x − ⌊√n⌋ iff the equation x2 ≡ n mod q is
solvable. And if q is a divisor of Q(a) the it is a divisor of Q(a + kq) for all k ∈ Z.

For the composite odd number n define

P(n) :=

{
p ∈ P | p = 2 or

(
n

p

)
= 1

}
.

This is the set of all primes for which the equation x2 ≡ n mod p is solvable and6 p ∤ n.

Algorithm 5.3. Fix a bound B ∈ N and a factor base F ⊂ P(n). For a sieve interval
S := {−s, . . . , s} ⊂ Z the following algorithm returns the list of those Q(a) with a ∈ S
which are B-powersmooth with prime factors in7 F .

(1) Set La := Q(a) for all a ∈ S.
(2) For all p ∈ F :

(a) Solve8 the equation x2 ≡ n mod p. (Hence, by Remark 5.2, p | Q(a) for all
a ∈ Z with a ≡ x − ⌊√n⌋ mod p.)

5German: Sieb
6Recall,

(
n
p

)
= 0 means that p | n — so we have found a prime divisor of n and we are done.

7One says, “which factor over F ”.
8Cf. proof of Theorem 5.2.18.
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(b) Sieve: For all a ∈ S with a ≡ ±x − ⌊√n⌋ mod p, where x is a solution of
the equation x2 ≡ n mod p: Replace La by the quotient La

pe , where pe is the
maximal power dividing La which is ≤ B .

(3) return the list of those Q(a) with a ∈ S for which La = 1.

Exercise 5.4. Let n = 4417. Compare the needed sieve width s for F = {−1, 2, 3, 7}
and F = {−1, 2, 3, 13}.





CHAPTER 9

Elliptic curves

Begin
Lect. 231. The projective space

Let K be a field. The set

An(K) = Kn = {(x1, . . . , xn) | xi ∈ K}
is called the affine space of dimension n over K. If K is clear from the context then we
will simply write An instead.

Two distinct points P,Q ∈ An(K) uniquely determine an (affine) line

PQ := P + K · (Q − P ) := {P + k(Q − P ) | k ∈ K}.
containing both of them.

The projective space of dimension n over K is defined as the set

Pn(K) :=
(
Kn+1 \ {0}

)
/K∗ := {K∗ · x | x ∈ Kn+1 \ {0}}.

Again we write Pn if the field K is clear from the context.
A point P in Pn(K) can thus be identified with a 1-dimensional subspace of Kn+1.

More generally, define the trace of a subset Z ⊂ Pn(K) to be the subset

Z∗ ⊂ Kn+1 = {x ∈ Kn+1 \ {0} | K∗ · x ∈ Z} ∪ {0}.
This gives a one-to-one correspondence between subsets of Pn(K) and those subsets of the
underlying vector space Kn+1 which are unions of 1-dimensional subspaces.

Example 1.1. A (projective) line in Pn(K) is the set of all 1-dimensional subspaces
of a 2-dimensional subspace L ≤ Kn+1. We identify the projective line with its trace
L. Two distinct points P,Q ∈ Pn(K) determine a unique projective line PQ := P + Q
passing through both of them. P + Q is the 2-dimensional span of P,Q, both viewed as
1-dimensional subspaces of Kn+1.

1.a. Homogenous coordinates and affine charts. If x = (x0, . . . , xn) ∈ Kn+1\{0}
then for the point P = K · x we write

P = (x0 : . . . : xn).

We call x0, . . . , xn ∈ K the homogeneous coordinates of P . They are uniquely deter-
mined by P up to a common nonzero factor:

(x0 : . . . : xn) = (y0 : . . . : yn) ⇐⇒ (y0, . . . , yn) = k · (x0, . . . , xn) for some k ∈ K∗.

Example 1.2. Fix a field K.

79
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(1) A1 = {a|a ∈ K} and P1 = {(x : y) | (x, y) ∈ K2 \ {0}}. Identifying A1 with the
affine subspaces {(1, y) | y ∈ K} ⊂ K2 or {(x, 1) | x ∈ K} ⊂ K2 defines two
embeddings

ϕ0 : A1 → P1, y 7→ (1 : y),

ϕ1 : A1 → P1, x 7→ (x : 1).

Visualize the two “screens” and the “light rays” in K2 = R2! These embeddings
are also called (standard) affine charts of P1.
The elements of the image ϕ0(A

1) ⊂ P1 (resp. ϕ1(A
1) ⊂ P1) are called affine

points w.r.t. the chart ϕ0 (resp. ϕ1). The point (0 : 1) ∈ P1, corresponding to
the y-axis in K2, is the only non-affine point w.r.t. ϕ0. It is called the point at
infinity1 w.r.t. ϕ0. Analogously for (1 : 0) and ϕ1. Summing up:

P1 = ϕ0(A
1)︸ ︷︷ ︸

affine points

∪̇ {(0 : 1)︸ ︷︷ ︸
pt at ∞

} = ϕ1(A
1)︸ ︷︷ ︸

affine points

∪̇ {(1 : 0)︸ ︷︷ ︸
pt at ∞

}.

The partial inverses are given by the “projections”

ϕ−1
0 : P1 \ {(0 : 1)} → A1, (x : y) 7→ y

x
,

ϕ−1
1 : P1 \ {(1 : 0)} → A1, (x : y) 7→ x

y
.

(2) A2 = {(a, b)|a, b ∈ K} and P2 = {(x : y : z) | (x, y, z) ∈ K3 \ {0}}. We have three
standard charts

ϕ0 : A2 → P2, (y, z) 7→ (1 : y : z),

ϕ1 : A2 → P2, (x, z) 7→ (x : 1 : z),

ϕ2 : A2 → P2, (x, y) 7→ (x : y : 1).

We will usually identify A2 with its image under ϕ2 and call its elements the affine
points (w.r.t. ϕ2). The complementary set

U := P2 \ ϕ2(A
2) = {(x : y : 0) | (x, y) ∈ K2 \ {0}} ⊂ P2

is a projective line, called the line at infinity2 (w.r.t. the chart ϕ2). We will
usually refer to ϕ2. Visualize in K3 = R3.

Exercise 1.3. Generalize to the n-dimensional case.

1.b. Algebraic sets and homogenization. The vanishing set

V (F ) := {(x, y) ∈ K2 | F (x, y) = 0}
of a polynomial F ∈ K[x, y] is an example of a so-called algebraic set.

1German: unendlich ferner Punkt
2German: unendlich ferne Gerade
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Example 1.4. Visualize in K2 = R2 the vanishing sets of the degree 2 polynomials

F = x2 + y2 − 1, F = x2 − y2, and F = x2 − y.

For each F visualize the image ϕ2(V (F )) ⊂ P2(R) by its trace in K3 = R3 and obtain
special (singular) ruled surfaces3.

Definition 1.5. Let K be a field.

(1) A polynomial F ∈ K[x0, . . . , xn] of degree d is called homogeneous if all its
monomials are of degree d. It follows that F (λx0, . . . , λxn) = λdF (x0, . . . , xn).

(2) For a polynomial F ∈ K[x, y] define the homogenization F ∗ ∈ K[x, y, z] (w.r.t.
ϕ2) by setting

F ∗(x, y, z) := zdF (
x

z
,
y

z
) ∈ K[x, y, z],

where d = deg F . The homogenization is a homogeneous polynomial of degree d.

Remark 1.6. Let F ∈ K[x, y]. The trace of the image ϕ2(V (F )) coincides with the
affine points of the vanishing set of the homogenized polynomial F ∗:

ϕ2(V (F )) = V (F ∗) \ U.

Example 1.7. Homogenizing the polynomials in Example 1.4 we get

F ∗ = x2 + y2 − z2, F ∗ = x2 − y2, and F ∗ = x2 − yz.

Visualize V (F ∗) in K3 = R3.

(1) V (x2 + y2 − z2) does not intersect the line at infinity U = {z = 0} if K = R.
What happens for K algebraically closed (e.g., K = C)?

(2) V (x2 − y2) has exactly two points at infinity, namely (1 : 1 : 0) and (1,−1 : 0).
(3) V (x2 − yz) meets U in the point (0 : 1 : 0) (but with “multiplicity” 2). Visualize

by a perspective drawing in K2 = R2 with the line at infinity being the horizon.

Exercise 1.8. Discuss the points at infinity of V (x2 + y2 − z2), V (x2 − y2), and
V (x2 − yz) w.r.t. the two other standard charts ϕ0 and ϕ1.

In what follows we will often write F ∈ K[x, y] and mean V (F ∗) ∈ P2. An L(x, y) =
R(x, y) will stand for the polynomial F := L − R, so V (L = R) := V (L − R).

1.c. Elliptic curves. Let K be a field.

Definition 1.9. The equation

E∗ : y2z + a1xyz + a3yz2 = x3 + a2x
2z + a4xz2 + a6z

3, ai ∈ K.

is called the (homogeneous) Weierstrass equation. It is the homogenization of the
(affine) Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ K.

3German: Regelflächen
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Denote the vanishing set of E∗ by

E(K) := V (E∗) ⊂ P2.

The point (0 : 1 : 0) is the only point of E(K) at infinity, i.e., at z = 0. It has “multiplicity”
3 since E∗(x, y, 0) : x3 = 0.

Remark 1.10 (Normal forms). Depending on the characteristic of the field K one can
transform the Weierstrass equation into a simpler form by a coordinate change:

(1) If char K 6= 2 then complete the square by substituting y → y − a1x+a3

2
to obtain

the normal form
y2 = x3 + a′

2x
2 + a′

4x + a′
6,

the right hand side being a cubical univariate polynomial (e.g., a′
2 = a2 +

a4
1

4
).

(2) If char K 6= 2, 3 then the substitution x → x − 1
3
a′

2 finally yields

y2 = x3 + ax + b.

Example 1.11. We fix K = R, so let f(x) = x3 + ax + b ∈ R[x]. We distinguish three
cases:

(1) f(x) has exactly one real root. Visualize V (y2 = f(x)) for a > 0, a = 0, a < 0.
(2) f(x) has exactly three real roots. Visualize.
(3) f(x) has one simple and one double root. Visualize.
(4) f(x) has one triple root. Visualize.

Example 1.12. The elliptic curve E : y2 = x3 + 2x − 1 over K = F5 has 6 points:

x 0 1 2 3 4
f(x) 4 2 1 2 1

y 2, 3 − 1, 4 − 1, 4

E(F5) = {(0, 2), (0, 3), (2, 1), (2, 4), (4, 1), (4, 4)}.
1.c.i. Singularities. Let K be a field, E a Weierstrass equation, and

F := y2 + a1xy + a3y − (x3 + a2x
2 + a4x + a6),

F ∗ := y2z + a1xyz + a3yz2 − (x3 + a2x
2z + a4xz2 + a6z

3)

be the corresponding defining (affine resp. homogenous) polynomials.

Definition 1.13. Let P = (x0 : y0 : z0) ∈ E(K) be a point on the elliptic curve.
W.l.o.g. assume x0 6= 0.

• P is called a singular point (of E) or simply singular if

∂F ∗

∂y
(x0, y0, z0) =

∂F ∗

∂z
(x0, y0, z0) = 0.

• E(K) (or E) is called singular if there is a singular point P ∈ E(K), otherwise
nonsingular or smooth.

Remark 1.14.
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(1) (0 : 1 : 0) is not a singular point: ∂F ∗

∂z
(0, 1, 0) = (y2+a1xy+2a3yz−a2x

2−2a4xz−
3a6z

2)(0, 1, 0) = 1 6= 0.
(2) char K 6= 2, 3: disc(x3 + ax + b) = −(4a3 + 27b2).
(3) char K 6= 2: E : y2 = f(x). Then E is singular ⇐⇒ disc f = 0.

Definition 1.15. E is called an elliptic curve if E is smooth.

Figure 1. A family of elliptic curves.

Begin
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2. The group structure (E, +)

Let K be a field, K̄ its algebraic closure, and E an elliptic curve over K. In this section
P2 refers to P2 := P2(K̄) (the K̄ points of E).

Theorem 2.1. Let L ⊂ P2 be a line. Then |L ∩ E(K̄)| = 3, counted with multiplicity.

Proof. The idea is the following: Substituting a parametrization of the line yields an
equation of degree 3 in one indeterminate (parameter the line). This has exactly three
roots in K̄ counted with multiplicity. It is not obvious how this argument takes care of
points at infinity. So we give an elementary proof. Let

L = {(x : y : z) | ax + by + cz = 0} ∈ P2 with (a, b, c) 6= (0, 0, 0).

Case 1: a = b = 0: L = {(x : y : 0) ∈ P2} is the line at infinity. To compute L ∩ E(K̄)
set z = 0 in E to obtain x3 = 0. The infinite far point (0 : 1 : 0) is a root of
multiplicity 3.

Case 2: a 6= 0 or b 6= 0: L = {(x, y) | ax + by = −c} ∪ {(b : −a : 0)}.
Case a: b 6= 0: (b : −a : 0) 6= (0 : 1 : 0), hence (b : −a : 0) 6∈ E(K̄). Now we compute

the affine points by substituting y = −ax+c
b

in E to obtain a cubic polynomial
in x with 3 roots in K̄ (counted with multiplicity).
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Case b: b = 0, a 6= 0: (0 : 1 : 0) ∈ E(K̄)∩L. To determine the affine points substitute
x = − c

a
in E and obtain a quadratic polynomial in y that has two roots in

K̄ (counted with multiplicity). This gives 3 points.

¤

Remark 2.2. Bézout’s theorem states two curves of degree n and m which do not
have a common component intersect in nm points counting multiplicities. The previous
Theorem is a special case of Bézout’s theorem. That two distinct lines intersect in exactly
one points is also a special case.

2.a. Tangents. Let F ∗ = y2z + a1xyz + a3yz2 − (x3 + a2x
2z + a4xz2 + a6z

3) and E
the corresponding elliptic curve.

Definition 2.3. Let P ∈ E(K̄). The line

TP := {(u : v : w) ∈ P2 | ∂F ∗

∂x
(P ) · u +

∂F ∗

∂y
(P ) · v +

∂F ∗

∂z
(P ) · w = 0}

is called the tangent of E at P . One can rewrite the defining equation as ∇F ∗(P )·




u
v
w


 =

0, where ∇ = ( ∂
∂x

, ∂
∂y

, ∂
∂z

).

Remark 2.4.

(1)

∂F ∗

∂x
= a1yz − 3x2 − 2a2xz − a4z

2.

∂F ∗

∂y
= 2yz + a1xz + a3z

2.

∂F ∗

∂z
= y2 + a1xy + 2a3yz − a2x

2 − 2a4xz − 3a6z
2.

(2) If P = (0 : 1 : 0) then ∇F ∗(P ) = (0, 0, 1). Hence TP = {(u : v : w) | w = 0} = U ,
the line at infinity.

(3) If P = (x : y : 1) then

∂F ∗

∂x
(P ) = a1y − 3x2 − 2a2x − a4.

∂F ∗

∂y
(P ) = 2y + a1x + a3.

∂F ∗

∂z
(P ) = y2 + a1xy + 2a3y − a2x

2 − 2a4x − 3a6.

Verify that ∇F ∗(P ) ·




u
v
w


 = 3F (x, y).
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From (2) and (3) we deduce that P ∈ TP for all P ∈ E(K̄). On can prove that P ∈ E(K̄)
is a multiple intersection point of TP and E(K̄) wit multiplicity at least 2. We have verified
this for infinite point (0 : 1 : 0) which is an intersection point with multiplicity 3.

Definition 2.5.

(1) Fix O := (0 : 1 : 0) ∈ E(K̄) (O like origin).
(2) For P,Q ∈ E(K̄) define P ∗ Q by E(K̄) ∩ L = {P,Q, P ∗ Q}, where

L :=

{
PQ if P 6= Q
TP if P = Q

.

(3) Finally define the operation + for P,Q ∈ E(K̄) by

P + Q := (P ∗ Q) ∗ O.

Visualize!
Caution: This is different from the sum of traces P + Q = PQ.

P + Q + R = O P + Q + Q = O P + Q + O = O P + P + O = O

Figure 2. The group law on the R-points of the elliptic curve E : y2 =
x3 − x + 1

Remark 2.6. Let P,Q,R be points on E(K̄). Then

(1) ∗ and + are commutative.
(2) (P ∗ Q) ∗ P = Q.
(3) O ∗ O = O.
(4) Let L ∈ P2 be an arbitrary line, E(K̄) ∩ L = {P,Q,R}, then (P + Q) + R = O.
(5) P + O = P .
(6) P + Q = O ⇐⇒ P ∗ Q = 0.
(7) + is associative (!)
(8) (E(K̄), +) is an Abelian group with neutral element O and −P = P ∗ O.
(9) E(K) is a subgroup of E(K̄).

Proof. (1) By construction.
(2) Definition of ∗.
(3) Remark 2.4.
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(4) (P + Q) + R := (((P ∗ Q)︸ ︷︷ ︸
R

∗O) ∗ R) ∗ O
(2)
= O ∗ O

(3)
= O.

(5) P + O = (P ∗ O) ∗ O = (O ∗ P ) ∗ O = P .

(6) P + Q = O ⇐⇒ (P ∗ Q) ∗ O = O
(5)⇐⇒ P ∗ Q = O ∗ O = O.

(7) Without a further idea this leads to a lengthy case by case distinction. There exist
wonderful geometric4 ideas to prove the associativity. We will see one of them next
semester in the seminar.

(8) Follows from (5) and (6)+(7)
(9) Let E be defined over K and P,Q ∈ E(K). Then L,L ∩ E is defined over K.

Then P ∗Q is as the third root of L ∩E(K̄) is also in K. The is a special case of
the following simple fact:
If f ∈ K[x] with deg f = r and if r − 1 roots are in K then the last root is in K.

¤

2.b. A formula for −P := P ∗ O where P 6= O. Let P = (x0, y0) = (x0 : y0 : 1)
(affine) and O = (0 : 1 : 0). Next, we want to determine PO. The following equivalences

are immediate: (x : y : 1) ∈ PO ⇐⇒




x
y
1


 ∈

〈


x0

y0

1


 ,




0
1
0




〉
⇐⇒ x = x0. So

PO = {(x0 : y : 1) | y ∈ K} ∪ {O}.
(x0 : y : 1) ∈ E(K) ⇐⇒ F (x0, y) = 0 ⇐⇒ y = y0, y1 where F (x0, y) = (y − y0)(y − y1).
Coefficient matching yields: −y0 − y1 = a1x0 + a3, so y1 = −y0 − a1x0 − a3. Finally,

−P = P ∗ O = (x0 : −y0 − a1x0 − a3 : 1).

For the most important special case: E : y2 = f(x), e.g. when char K 6= 2. Then
a1 = a3 = 0 and

−(x0, y0) = (x0,−y0).

2.c. A formula for P ∗ Q where P,Q 6= O. Let P = (x1, y1) = (x1 : y1 : 1) and
Q = (x2, y2) = (x2 : y2 : 1) be two affine points. By definition, P ∗Q = O ⇐⇒ P ∗O = Q
⇐⇒ x1 = x2 and y1 +y2 +a1x1 +a3 = 0. For each line L ⊂ P2 we have: O = (0 : 1 : 0) ∈ L
⇐⇒ L∩A2 is parallel to the y-axis. Let without w.l.o.g. P ∗Q 6= O (otherwise Q = −P ).
Set

L :=

{
PQ if P 6= Q
TP if P = Q

.

Then L ∩ A2 = {(x, y) | y = λx + ν} for some λ, ν ∈ K.
Case P 6= Q: Then

λ =
y2 − y1

x2 − x1

and ν = y1 − λx1.

4The most elegant proof uses the theory of divisors [Har77, Chapter IV, Section 4].
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Case P = Q = (x1, y1) = (x1 : y1 : 1):

TP ∩ A2 = {(x, y) | ∂F ∗

∂x
(P ) · x +

∂F ∗

∂y
(P ) · y +

∂F ∗

∂z
(P ) = 0}

and
∂F ∗

∂x
(P ) = a1y − 3x2 − 2a2x − a4.

∂F ∗

∂y
(P ) = 2y + a1x + a3.

Solving for y we recover the slope5

λ = −
∂F ∗

∂x
(P )

∂F ∗

∂y
(P )

=
a1y − 3x2 − 2a2x − a4

2y + a1x + a3

.

Further L ∩ E(K) = L ∩ A2 ∩ E(K). Write F (x, λx + ν) = −(x − x1)(x − x2)(x − x3).
Coefficient matching at x2 yields: x1 + x2 + x3 = λ2 + a1x − a2. Finally, P ∗ Q = (x3, y3)
with

x3 = λ2 + a1λ − a2 − x1 − x2,

y3 = λx3 + ν = λ(x3 − x1) + y1.

2.d. A formula for P + Q where P,Q 6= O. We now put together the above com-
putations for P + Q = (P ∗ Q) ∗ O

P + Q = (λ2 + a1λ − a2 − x1 − x2︸ ︷︷ ︸
=x3

,−y1 + λ(x1 − x3) − a1x1 − a3︸ ︷︷ ︸
=y3

).

For the most important special case: y2 = x3 + ax + b, i.e., a1 = a2 = a3 = 0, a4 = a,
and a6 = b. Then

λ =
y2 − y1

x2 − x1

if P 6= Q or λ =
3x2

1 + a

2y1

if P = Q.

Finally,

x3 = λ2 − x1 − x2,

y3 = −y1 + λ(x1 − x3).

Example 2.7. We take K = F5
∼= Z/5Z and y2 = x3 + 2x − 1. Verify that

E(F5) = {(0, 2), (0, 3), (2, 1), (2, 4), (4, 1), (4, 4)} ∪ {O}.
• P = (0, 2) =⇒ −P = (0,−2) = (0, 3).
• Q = (2, 1) =⇒ P + Q = (2, 4).
• P + P = 2P = (4, 1).
• (0, 3) + (2, 1) = (4, 1).

5German: Steigung
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Remark 2.8. The choice of O := (0 : 1 : 0) was arbitrary but convenient for two
reasons:

(1) It is the unique non-affine point w.r.t. the fixed coordinate system.
(2) It satisfies O ∗ O = O.

Begin
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3. Elliptic curves over finite fields

3.a. Squares in finite fields. Finding square roots in the finite field Fq is the first
step to find Fq-points (i.e., points in E(Fq)) on an elliptic curve E.

Remark 3.1. Let p be a prime and q a power of p.

(1) sq : F∗
q → F∗

q, x 7→ x2 has kernel ker sq = {±1}. Hence

|(F∗
q)

2| =

{
q−1
2

for q odd
q − 1 for q even

.

(2) Define for q odd the quadratic character

χ : F∗
q → {±1} ⊂ F∗

q, x 7→ x
q−1
2 .

That χ(a) = 1 ⇐⇒ a ∈ (F∗
q)

2, easily follows from (1) generalizing Theorem 5.2.4
by Euler.

Algorithm 3.2. Given an odd prime power q and an a ∈ F∗
q with χ(a) = 1.

return b ∈ F∗
q with b2 = a using the algorithm in the proof of Theorem 5.2.18, slightly

generalized for prime powers.

3.b. Counting points. Let E be an elliptic curve over Fq and N := |E(Fq)|.
Theorem 3.3 (Hasse-Weil). Let a := q+1−N and α, β be the roots of the quadratic

polynomial x2 − ax + q. Then

|a| ≤ 2
√

q.

Further,

|E(Fqm)| = qm + 1 − (αm + βm)

for all m ∈ N.

Proof. A good reference is [Was08, Theorem 4.2]. We will prove this theorem in the
seminar, next semester. ¤

Remark 3.4. For N = |E(Fq)| the Hasse-Weil theorem estimates

q + 1 − 2
√

q ≤ N ≤ q + 1 + 2
√

q.

If q is a prime one can show that each natural number in this interval occurs as the order
of an elliptic curve E(Fq).
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Example 3.5. Let E : y2 = x3 + 7x + 1 be an elliptic curve of F101. It is possible to
show that the point (0, 1) has order 116 (see Algorithm 3.8 below), so N = |E(F101)| is a
multiple of 116. But the Hasse-Weil theorem says that

81 ≤ 101 + 1 − 2
√

101 ≤ N ≤ 101 + 1 + 2
√

101 ≤ 123,

and the only multiple of 116 in this range is 116. Hence, E(F101) is cyclic of order N :=
|E(F101)| = 116, generated by (0, 1).

Example 3.6. With little effort we can determine all the points of E : y2 +xy = x3 +1
over the small field F2:

E(F2) = {O, (0, 1), (1, 0), (1, 1)}.
Determining all F2101-points is extremely hard (and of course useless). With a = −1 and
q = 2 the Hasse-Weil theorem counts for us the number of points:

|E(F2101)| = 2101 + 1 −
[(−1 +

√
−7

2

)101

+

(−1 −
√
−7

2

)101
]

= 2101 + 1 − 2969292210605269

= 2535301200456455833701195805484 ≈ 2.5 · 1030.

Theorem 3.7 ([Was08, Theorem 4.3]). Let p be a prime and q = pn and define
N := q + 1 − a for some a ∈ Z with |a| ≤ 2

√
q. Then there is an elliptic curve E defined

over Fq with |E(Fq)| = N if and only if a satisfies one of the following conditions:

(1) (a, p) = 1.
(2) n is even and a = ±2

√
q.

(3) n is even, p 6≡ 1 mod 3, and a = ±√
q.

(4) n is odd, p = 2 or p = 3, and a = ±p
n+1

2 .
(5) n is even, p 6≡ 1 mod 4, and a = 0.
(6) n is odd and a = 0.

Let P ∈ E(Fq). We want to find the order of P as an element of the group E(Fq). We

know that NP = O. Of course we don’t know N yet, but we know that q + 1 − 2
√

2 ≤
N ≤ q + 1 + 2

√
q. One could of course try all values in this interval. This would take 4

√
q

steps. The following algorithm runs in about 4q
1
4 steps:

Algorithm 3.8 (Baby step, giant step, [Was08, §4.3.4]). Given P ∈ E(Fq) com-
pute its order.

(1) Compute Q = (q + 1)P .

(2) Choose an integer m > q
1
4 . Compute and save the points jP for j = 0, . . . ,m

(baby steps).
(3) Compute the points

Q + k(2mP ) for k = −m, . . . ,m

(giant steps) until Q+k(2mP ) = ±jP . Then MP = O with M := q+1+2mk∓j.
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(4) Factor M = pe1
1 · · · per

r . Compute (M/pi)P for i = 1, . . . , r. If (M/pi)P = O for
some i, replace M with M/pi and repeat the step until (M/pi)P 6= O for all i.
Then M is the order of P .

To determine N = |E(Fq)| continue as follows:

(5) Repeat the previous steps with randomly chosen points in E(Fq) until the least
common multiple of the element order divides only one integer N in the Hasse-

Weil interval. It is then the group order N .

Proof. Justifying the existence of k, j in (3) is an exercise. ¤

Example 3.9. Let E be the elliptic curve y2 = x3−10x+21 over F557 and P = (2, 3) ∈
E(F557).

(1) Q = 558P = (418, 33).

(2) Let m = 5 > 557
1
4 . The list of jP ’s (“baby steps”) is

O, (2, 3), (58, 164), (44, 294), (56, 339), (132, 364).

(3) For k = 1 we discover that Q + k(2mP ) = (2, 3) matches the list for j = 1 (“giant
step”). Hence (q + 1 + 2mk − j)P = 567P = O.

(4) Factor 567 = 34 ·7. Compute (567/3)P = 189P = O. Factor 189 = 33 ·7. Compute
(189/3)P = (38, 535) 6= O and (189/7)P = (136, 360) 6= O. Therefore, 189 is the
order of P .

(5) This suffices to conclude that |E(F557)| = 567.

Remark 3.10. There exists an algorithm due to Schoof which computes the number
of points on an elliptic curves over finite fields Fq in about log8 q steps (cf. [Was08, §4.5]).

3.c. Finding points.

Algorithm 3.11. Let q be a power of an odd prime and E : y2 = f(x) an elliptic
curve of Fq (cf. Remark 1.10). The following algorithm returns an Fq-point of E:

(1) Choose x ∈ Fq randomly until f(x) ∈ (Fq)
2 (test f(x) = 0 or f(x)

q−1
2 = 1 ∈ Fq).

(2) Compute a square root y with y2 = f(x) using Algorithm 3.2.

Remark 3.12.
For finding points on elliptic curves over F2n see [Kob98, Exercise 6.2.2, page 136].

3.d. The structure of the group (E, +).

Theorem 3.13 (Structure Theorem for finitely generated Abelian groups). Let A be
a finitely generated Abelian group. Then there exist r, k ∈ N0 and n1, . . . , nk ∈ N with
ni | ni+1 such that

A ∼= Zr × Z/n1Z × · · ·Z/nkZ.

r is called the rank6 of A and the ni’s are called the determinantal divisors of A.

6Of course, A is finite if and only if its rank is 0.
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Theorem 3.14 (Structure Theorem for elliptic curves over finite fields). There exists
natural numbers n1, n2 with n1 | n2 such that

E(Fq) ∼= Z/n1Z × Z/n2Z.

Proof. We will prove this in the seminar. The statement includes the case (n1, n2) =
(1, n) in which case E(Fq) ∼= Z/nZ. ¤

One can sharpen this further

Theorem 3.15 (Structure Theorem for elliptic curves over finite fields (refined ver-
sion)). Let p, q, and N be as in Theorem 3.7. Write N = pen1n2 with p ∤ n1n2 and n1 | n2

(possibly n1 = 1). There exists an elliptic curve E over Fq such that

E(Fq) ∼= Z/peZ × Z/n1Z × Z/n2Z

if and only if

(1) n1 | q − 1 in the cases (1), (3), (4), (5), (6) of Theorem 3.7.
(2) n1 = n2 in casse (2) of Theorem 3.7.

These are all groups that occur as E(Fq).

Example 3.16. Here are the possible isomorphism types of elliptic curves E(F5):

• Hasse-Weil states that 2 ≤ N = E(Fq) ≤ 10. This leaves us with the following
possibilities (according to Theorem 3.13):

Z/2, Z/3, Z/4, Z/2 × Z/2, Z/5, Z/6 ∼= Z/2 × Z/3, Z/7, Z/8,

Z/2 × Z/4, Z/2 × Z/2 × Z/2, Z/9, Z/3 × Z/3, Z/10 ∼= Z/2 × Z/5.

• The above refined structure theorem 3.15 rules out the underlined groups.
Begin
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4. Lenstra’s factorization method

We now come to one of the amazing applications of elliptic curves. It can be viewed as
an ingenious variation of Pollard’s p − 1 method (see Section 8.1), but one that comes
with an extra degree of freedom: Since it is based on elliptic curves, one can vary the used
curve, and even run the algorithm for different curves in parallel.

Let n be the composite number that we want to factorize. Lenstra’s method relies on
the choice of random elliptic curves Ei over the ring Z/nZ with random points on Ei(Z/nZ)
(the group law of elliptic curves over rings is more involved [Was08, §2.11]). If one starts
with the elliptic curve then finding a point involves finding a square root modulo n which,
as we saw in Lemma 5.2.20, is computationally equivalent to factoring n. To overcome this
problem the choice of the curve cannot be independent from the choice of the point:
Choose a random element a mod n and a random pair P = (u, v) mod n. Then compute

b ≡ v2 − u3 − au mod n.

The random elliptic curve
y2 = x3 + ax + b

has the Z/nZ-point P = (u, v).
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Algorithm 4.1 (Lenstra). The following algorithm takes a composite number n as
its input and returns a factor of n or fail.

(1) Choose several7 random elliptic curves Ei : y2 = x3 + aix + bi over Z/nZ together
with Z/nZ-points Pi (as above).

(2) Choose a bound B (≈ 108) and compute lcm{1, . . . , B}Pi (or (B!)Pi) on Ei(Z/nZ)
for each i.

(3) If step (2) fails because some slope λ does not exist modulo n then we have found
a factor of n. return this factor.

(4) return fail.

Remark 4.2.

• One can use Remark 3.4 to explain why this method often yields a nontrivial
factor. For details see [Was08, p. 193].

• The method is very effective in finding prime factors < 1040. But in cryptographic
applications ones uses prime numbers with at least 100 digits. In this range
the quadratic sieve (QS) and the number field sieve methods (NFS) outperform
Lenstra’s method. Nevertheless, it is still useful in intermediate steps of several
attacks.

Example 4.3 ([Was08, Example 7.1]). Let us demonstrate the method to factor n =
4453. Choose the elliptic curve y2 = x3 + 10x− 2 mod n with Z/nZ-point P = (1, 3). Try
to compute 3P . First compute 2P . The slope of the tangent at P is

3x2 + 10

2y
=

13

6
≡ 3713 mod 4453.

Hence 2P = (x, y) with

x ≡ 37132 − 2 ≡ 4332 mod 4453, and y ≡ −3713(x − 1) − 3 ≡ 3230 mod 4453.

To compute 3P we add P to 2P . The slope is

3230 − 3

4332 − 1
=

3227

4331
.

But 4331 is not invertible modulo n since (4331, 4453) = 61 6= 1, and we have found a
factor of n. This gives the factorization 4453 = 61 · 73. For the elliptic curve this means
that

E(Z/4453Z) = E(Z/61Z) × E(Z/73Z)

be the chinese remainder theorem.
The method worked since ordE(Z/61Z) P = 3 while ordE(Z/73Z) = 64. The improbable

coincidence of these two orders would have produced 0 mod n as the denominator of the
slope and the gcd would’ve been the trivial one n = 4453.

7... depending on your computing resources.
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5. Elliptic curves cryptography (ECC)

The hardness of solving the DLP in an Abelian group strongly depends on the way
how the group is represented. For example F∗

p
∼= (Z/(p− 1)Z, +). The DLP is hard in the

former and trivial in the latter.
The main usage of elliptic curves in cryptography is to provide an alternative realization

of Abelian groups for which all known attacks on the DLP quickly lose their strength (see
Chapter 10).

In principle, any cryptosystem or signature scheme which is based on the DLP in F∗
q

can be used with elliptic curves. The Diffie-Hellman cryptosystem defined in 6.2.3 is
a good example for this. There is even an elliptic curve analogue of RSA [Was08, §6.8]
that was suggest by Koyama-Maurer-Okamoto-Vanstone.

5.a. A coding function for elliptic curves. But in order to do this we need a way
to encode messages by points on an elliptic curve:
Let E : y2 = x3+ax+b be an elliptic curve over Fp with p ≫ 100 an odd prime and let m be
a message encoded as a number 0 ≤ m < p

100
. For j = 0, . . . , 99 compute sj = x3

j + axj + b

with xj := 100m + j and check if sj is a square (iff s
p−1
2

j ≡ 1 mod p). Stop at the first such
j. Computing a square root yj by Algorithm 3.11 yields an element P = (xj, yj) on E(Fp).
Recover the number m encoding the message as ⌊ xj

100
⌋. Since sj is a random element of F∗

p

the probability of lying in (F∗
p)

2 is 1
2
. So the probability of failing to find a point P after

100 trials is 2−100.
This method was proposed by Neal Koblitz.





CHAPTER 10

Attacks on the discrete logarithm problem

In this chapter we list two attacks on the DLP. One is specific to the group F∗
q and the

other is independent of the representation of the Abelian group.

1. Specific attacks

1.a. The index calculus. This attack is specific to the group F∗
q. We will deal with

the case F∗
p where p is an odd prime. The general case F∗

q requires more work.
So let p be an odd prime and g a generator of the cyclic group F∗

p. The discrete
logarithm (cf. Definition 1.3)

logg : F∗
p → Z/(p − 1)Z

defined by glogg y = y mod p is an isomorphism of cyclic groups, in particular,

(logg) logg(y1y2) = logg(y1) + logg(y2) mod p − 1.

As we mentioned above, the DLP in the source group is hard, while the DLP in the range
group is trivial.

The idea of the attack is to compute logg(y) for “small” y’s and then to use the identity
(logg) to compute logg for arbitrary y’s. Note that

logg(−1) ≡ p − 1

2
mod p − 1.

This is a reformulation of the equation g
p−1
2 ≡ −1 mod p.

Algorithm 1.1 (index calculus). The algorithm takes y ∈ Fp = 〈g〉 as input and
returns the discrete logarithm logg y ∈ Z/(p − 1)Z or fail.

(1) Choose a bound B ∈ N and the factor base F (B) = {p ∈ P|p ≤ B} ∪ {−1} =
{−1, p1, . . . , pk}.

(2) Search for yi’s for which the lift bi ∈ Z of gyi ∈ F∗
p can be factored over F (B), i.e.,

bi ≡ (−1)ei0
∏k

j=1 p
eij

j mod p. Do this until the set of equations

yi ≡ logg ((−1)ei0)
︸ ︷︷ ︸

≡0 or p−1
2

+ei1 logg p1 + · · · + eik logg pk mod p − 1

can be solved for the vector of k unknowns (logg p1, . . . , logg pk). If the search fails
return fail.

95
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(3) Search for a j for which the lift b ∈ Z of gj · y ∈ F∗
p can be factored over F (B),

i.e., b ≡ (−1)a0
∏k

j=1 p
aj

j mod p. If the search fails return fail.

(4) Solve the equation

j + log y ≡ logg ((−1)a0)
︸ ︷︷ ︸

≡0 or p−1
2

+a1 logg p1 + · · · + ak logg pk mod p − 1

and return log y.

Example 1.2 ([Was08, Example 5.1]). We will demonstrate the method by computing
the discrete logarithm log3 37 mod 1217︸︷︷︸

p

. Choosing B = 13 gives the factor base F (B) =

{−1, 2, 3, 5, 7, 11, 13}. We compute

31 ≡ 3 mod 1217

324 ≡ −22 · 7 · 13

325 ≡ 53

330 ≡ −2 · 52

354 ≡ −5 · 11

387 ≡ 13.

This yields in particular: log3 2 ≡ 216 mod 1216︸︷︷︸
p−1

, log3 7 ≡ 113 mod 1216, and log3 11 ≡

1059 mod 1216. Finally 316 · 37 ≡ 23 · 7 · 11 mod 1217. Therefore, log3 37 ≡ 3 log3 2 +
log3 7 + log3 11 − 16 ≡ 588 mod 1216.

Remark 1.3. Several remarks are in order:

• The method was successfully used to compute discrete logarithms modulo a 120-
digit prime.

• Finding the appropriate yi’s and the j can be done using a version of the quadratic
sieve (QS) or the number field sieve (NFS) as in Section 8.5.

• In contrast to F∗
p = (Z/pZ)∗, elements of E(Fp) are rarely reductions of elements

in E(Z) (or E(Q)). It is thus widely believed that the index calculus cannot be
adapted to solve the DLP for elliptic curves.

Begin
Lect. 27

2. General attacks

By general attacks we mean attacks applicable for all representations of a finite Abelian
group. Pollard’s ρ method can be modified to give a general probabilistic algorithm to
solve the DLP [Was08, §5.2.2]. From the many known general attacks on the DLP we
only treat a modified version of the baby-step-giant-step algorithm.
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2.a. Baby step, giant step. Let G be an additively written Abelian group with
(known) order N . W.l.o.g. we can assume that G = 〈P 〉.

Algorithm 2.1 (Shanks). The following deterministic algorithm takes as input an
element Q ∈ G and returns the discrete logarithm k := logP Q, i.e., the minimal k ∈ N
with kP = Q.

(1) Fix an m >
√

N and compute mP .
(2) Compute and save the list L := (iP | 0 ≤ i < m) (“baby steps”).
(3) For j = 0, . . . ,m−1 compute the points Q−jmP (“giant steps”) until one matches

an element in L, say iP = Q − jmP .
(4) Since Q = kP with k ≡ i + jm mod N return (the smallest such) k.

Proof of correctness. Since m2 > N it follows that 0 ≤ k < m2. Write k = i+jm
with 0 ≤ i < m and 0 ≤ j = k−i

m
< m. Then Q − jmP = kP − jmP = iP . ¤

Example 2.2 ([Was08, Example 5.2]). Let G = E(F41), where E : y2 = x3 + 2x + 1.
Let P = (0, 1) and Q = (30, 40). The group order N is at most 54 by Hasse-Weil, so set
m = 8. The list of baby steps iP for 0 ≤ i < 8 consists of the points

O, (0, 1), (1, 39), (8, 23), (38, 38), (23, 23), (20, 28), (26, 9).

We start calculation the big steps for j = 0, 1, 2, . . .

(30, 40), (9, 25), (26, 9),

and stop since (26, 9) matches 7P in the list. With i = 7 and j = 2 we compute the
discrete logarithm k = 7 + 2 · 8 = 23. Indeed Q = 23P .





CHAPTER 11

Digital signatures

Under a digital signature or digital signature scheme (DSS) we understand a
mathematical scheme for ensuring the authenticity of data. A digital signature should lose
its validity if anything in the signed data was altered. This is one of the major advantages
compared with ink on paper signatures.

1. Definitions

Definition 1.1. An asymmetric signature is a 5-tuple (M,S, κ : K ′ → K, S,V)
where

• M is called the set of messages,
• S the set of signatures,
• κ : K ′ → K, d 7→ e a bijective map from the set of secret signing keys to the

set of public verification keys,
• S = (Sd : M Ã S)d∈K′ a family of multi-valued polynomial algorithms called the

signing algorithm,
• V = (Ve : M × S → {0, 1})e∈K a family of polynomial algorithms called the

signature verifications satisfying Vκ(d)(m, Sd(m)) = 0.

Normally one signs only hash values of messages for performance reasons: “hash-then-
sign”. We will come to hash functions below.

Definition 1.2. We list the following attacks models on a DSS:

(1) Key-only attack: The attacker only knows the public verification key of the
signer.

(2) Known-message attack (KMA): The attacker receives some messages (he
didn’t choose) and their corresponding signatures.

(3) (Adaptive) chosen-message attack (CMA): The attacker is allowed to (adap-
tively) choose messages and receives the corresponding signatures.

Definition 1.3. We list the following goals of an attack on a DSS:

(1) Total break: Recover the signing key.
(2) Universal forgery1: Forge signatures of any message.
(3) Existential forgery: Forge a signature for some message (without the ability to

do this for any message).

1German: Fälschung
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The strongest security model among the above combinations is the security against
existential forgery under an adaptive chosen message attack.

2. Signatures using OWF with trapdoors

Let f := (fi)i∈I : X → X be a OWF with trapdoor information (ti)i∈I as in Defini-
tion 5.2.24 (e.g., the Rabin function 5.2.25 or the RSA function 6.1.2). Set

• M = S = X,
• K = I, K ′ = {(i, ti) | i ∈ I}, κ : d := (i, ti) 7→ e := i,
• Sd : M → S, m 7→ f−1

e (m) (using the trapdoor information),

• Ve : M × S → {0, 1}, (m, s) 7→
{

1 if fe(s) = m
0 if fe(s) 6= m

.

Remark 2.1.

(1) Existential forgery is always possible by first choosing the signature s then the
message m := fe(s).

(2) If the OWF f is multiplicative (e.g., the RSA function: (xy)e = xeye) then the
universal forgery under an adaptive chosen-message attack is possible: To sign m
decompose it as m = m1m2 with m1,m2 6= m. Ask for the signatures of si of mi

(this is allowed since mi 6= m). Compute (m, s) = (m, s1s2) by the multiplicativity
of f .

(3) Another obvious drawback of this scheme is that the signature has the same length
as the message.

We know give a variant of asymmetric signatures that, under certain assumptions,
avoids the above mentioned drawbacks.

Definition 2.2 (Hash-then-sign). This is a variant of Definition 1.1 with the following
modifications (we are still using the notation of this section):

• M = {0, 1}•, S = X.
• H : M → X a map given by a polynomial algorithm, called the hash function.
• Sd : M → S, m 7→ f−1

e (H(m)).

• Ve : M × S → {0, 1}, (m, s) 7→
{

1 if fe(s) = H(m)
0 if fe(s) 6= H(m)

.

To avoid the above attack scenarios the hash function H must be a one-way non-
multiplicative function.

3. Hash functions

Definition 3.1.

(1) A hash function is a function H : {0, 1}• → {0, 1}ℓ for some fixed ℓ ∈ N given
by a polynomial algorithm.
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(2) H is called collision resistant if it is unfeasible to find distinct x1, x2 with
H(x1) = H(x2).

Remark 3.2.

(1) A collision resistant hash function is a one-way function (since finding a preimage
of H(x1) would lead to a collision).

(2) An “ideal” hash function behaves like a random oracle (RO):
A random oracle would give to each x ∈ {0, 1}• a random answer H(x) ∈ {0, 1}ℓ

and would store the answer internally as H[x]. If the oracle is given the same x
again it will return the cached value H[x].

(3) It is unknown if an “ideal” hash function exists.

Example 3.3 (Hash functions from block ciphers). Let (A, ℓ,K,E) be a block cipher
(E : B × K → B = Aℓ, (p, e) 7→ Ee(p)). Let A = {0, 1} and K = B, in particular
E : {0, 1}ℓ × {0, 1}ℓ → {0, 1}ℓ. Define H(x1, . . . , xr) ∈ {0, 1}ℓ with xi ∈ B recursively by
setting H(∅) = 0 and

H(x1, . . . , xr) = Eh(xr) + h, where h = H(x1, . . . , xr−1).

The widely used SHA1 : {0, 1}• → {0, 1}160 hash function is such an example. The details
are too technical. For the SHA3 competition cf. [NIS07].

Example 3.4. Let p be a prime number such that q := p−1
2

is also prime. Further let
b ∈ F∗

p = 〈a〉. Define the function

f : {0, . . . , q − 1} × {0, . . . , q − 1} → F∗
p, (x, y) 7→ axby.

As in the previous example, one can use f to construct a hash function. We claim that
finding a collision of f implies computing the DL loga b.

Proof. Let axby = ax′
by′

be a collision of f ((x, y) 6= (x′, y′). If y = y′ then ax = ax′

and x = x′ Ã. So y 6= y′. Let z := loga b. ax−x′
= by′−y =⇒ x − x′ ≡ z(y′ − y) mod p − 1

can be solved to obtain z. ¤

4. Signatures using OWF without trapdoors

4.a. Elgamal signature scheme. Let G = 〈g〉 be a cyclic group of order N gen-
erated by g. Further let f : G → {0, 1}• be a binary representation of the elements of G
and H : {0, 1} → Z/NZ a collision resistant hash function. The Elgamal signature
scheme is defined by setting:

• M = {0, 1}•.
• S = G × Z/NZ.

• K ′ = {d = (g, a) | a ∈ Z/NZ} κ−→ {e = (g, y) | y ∈ G} = K, (g, a) 7→ (g, ga).
• S(g,a) : {0, 1}• Ã G × Z/NZ, m 7→ σ with σ defined as follows:

– Choose randomly an k ∈ (Z/NZ)∗.
– Set r := gk ∈ G.
– Set s := k−1(H(m) + aH(f(r)) ∈ Z/NZ.
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– σ := (r, s).

• V(g,y) : {0, 1}• × (G × Z/NZ) → {0, 1}, (m, (r, s)) 7→
{

1 if gH(m)yH(f(r)) = rs

0 otherwise
.

Proof of correctness. rs = gH(m)yH(f(r)) ⇐⇒ ks = H(m) + aH(f(r)) ⇐⇒
s = k−1(H(m) + aH(f(r))). ¤

4.b. ECDSA. We end by describing the elliptic curve version of the digital signa-
ture algorithms (ECDSA). Choose an an elliptic curve E over Fq with E(Fq) = 〈P 〉 of
large prime order N (this assumption can be relaxed, see [Was08, §6.6]). Choose a secret
random integer a and compute Q = aP and publish (E, Fq, N, P,Q). To sign a message
with hash value m ∈ Z/NZ:

• Choose a random integer 1 ≤ k < N and compute R = kP = (x, y).
• Compute s = k−1(m + ax) mod N .
• The signature is (m,R, s).

To verify the signature do the following:

• Compute u1 = s−1m mod N and u2 = s−1x mod N .
• Compute V = u1P + u2Q.
• The signature is valid if V = R.

Proof of correctness. V = u1P + u2Q = s−1mP + s−1xQ = s−1(mP + xaP ) =
kP = R. ¤



APPENDIX A

Some analysis

1. Real functions

1.a. Jensen’s inequality.

Lemma 1.1. Jensen’s inequality Let f : I → R be a strictly concave, i.e., f(x)+f(y)
2

<

f(x+y
2

) for all x, y ∈ I with x 6= y). Then for all ai > 0 with
∑

i ai = 1 and all xi ∈ I
(i = 1, . . . , n) ∑

i

aif(xi) ≤ f(
∑

i

aixi).

Equality holds only if x1 = . . . = xn. ¤

1.b. The normal distribution. Recall the normal distribution N(µ, σ) with ex-
pected value µ and variance σ is given by the Gaussian density function

f(x) =
1√
2π

e−
1
2(

x−µ
σ )

2

N(0, 1) is called the standard normal distribution.
If X is N(0, 1) distributed and x > 0 then

µX((−x, x)) = erf(
x√
2
),

where

erf(x) :=
2√
π

∫ x

0

e−s2

ds

is the Gaussian error function. The function erfc := 1− erf is called the complemen-
tary Gaussian error function:

µX(R \ (−x, x)) = erfc(
x√
2
).
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contribute by correcting it.
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